Comparison of H-mode plasmas in JET-ILW and JET-C with and without nitrogen seeding

In high confinement mode, highly shaped plasmas with edge localized modes in JET, and for heating power of 15-17 MW, the edge fluid code EDGE2D-EIRENE predicts transition to detachment assisted by nitrogen at the low field side (LFS) target when more than 50% of the power crossing the separatrix between ELMs is radiated in the divertor chamber, i.e. ∼4 MW. This is observed both in the ITER-like wall (JET-ILW) and in the carbon wall (JET-C) configurations and is consistent with experimental observations within their uncertainty. In these conditions, peak heat fluxes below 1 MW m-2 are measured at the LFS target and predicted for both wall configurations. When the JET-C configuration is replaced with the JET-ILW, a factor of two reduction in the divertor radiated power and 25-50% increase in the peak and total power deposited to the LFS divertor plate is predicted by EDGE2D-EIRENE for unseeded plasmas similar to experimental observations. At the detachment threshold, EDGE2D-EIRENE shows that nitrogen radiates more than 80% of the total divertor radiation in JET-ILW with beryllium contributing less than a few %. With JET-C, nitrogen radiates more than 70% with carbon providing less than 20% of the total radiation. Therefore, the lower intrinsic divertor radiation with JET-ILW is compensated by stronger nitrogen radiation contribution in simulations leading to detachment at similar total divertor radiation fractions. 20-100% higher deuterium molecular fraction in the divertor recycling fluxes is predicted with light JET-C materials when compared to heavy tungsten. EDGE2D-EIRENE simulations indicate that the stronger molecular contribution can reduce the divertor peak power deposition in high recycling conditions by 10-20% due to enhanced power dissipation by molecular interaction.

[1]  A. Kallenbach,et al.  Modelling of carbon migration during JET 13C injection experiments , 2008 .

[2]  S. Brezinsek,et al.  Molecular and Atomic Deuterium in the Plasma Edge of TEXTOR‐94 , 2002 .

[3]  A. Taroni,et al.  Models and Numerics in the Multi-Fluid 2-D Edge Plasma Code EDGE2D/U , 1994 .

[4]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[5]  T. Osborne,et al.  Pedestal study across a deuterium fuelling scan for high δ ELMy H-mode plasmas on JET with the carbon wall , 2013 .

[6]  Y Liu,et al.  Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall , 2013, 1310.8433.

[7]  R. Felton,et al.  Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET , 2014, 1406.2923.

[8]  J. Contributors,et al.  Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components , 2014 .

[9]  M. Beurskens,et al.  Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D–EIRENE , 2015 .

[10]  C. Giroud,et al.  The H-mode pedestal structure and its role on confinement in JET with a carbon and metal wall , 2013 .

[11]  Jet Efda Contributors,et al.  Upgraded bolometer system on JET for improved radiation measurements , 2007 .

[12]  S. Brezinsek,et al.  Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER , 2015 .

[13]  C. Giroud,et al.  Residual carbon content in the initial ITER-Like Wall experiments at JET , 2013 .

[14]  M. Groth,et al.  Influence of the E  ×  B drift in high recycling divertors on target asymmetries , 2015 .

[15]  C. Giroud,et al.  First nitrogen-seeding experiments in JET with the ITER-like Wall , 2013 .

[16]  R. Preuss,et al.  Flux dependence of carbon erosion and implication for ITER , 2005 .

[17]  A. Loarte,et al.  Interpretation of ion flux and electron temperature profiles at the JET divertor target during high recycling and detached discharges , 1997 .

[18]  Jet Efda Contributors,et al.  The effect of a metal wall on confinement in JET and ASDEX Upgrade , 2013 .

[19]  R. Neu,et al.  Diverted tokamak carbon screening: scaling with machine size and consequences for core contamination , 2004 .

[20]  W. Fundamenski,et al.  Type-I ELM power deposition profile width and temporal shape in JET , 2011 .

[21]  J. Contributors,et al.  Modelling of tungsten re-deposition coefficient , 2015 .

[22]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[23]  Jet Efda Contributors,et al.  Integrated modelling of a JET type-I ELMy H-mode pulse and predictions for ITER-like wall scenarios , 2011 .

[24]  K. Zastrow,et al.  Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system. , 2014, The Review of scientific instruments.

[25]  Moderation of target loads using fuelling and impurity seeding on JET , 2011 .

[26]  J. Contributors,et al.  Simulations of tungsten transport in the edge of JET ELMy H-mode plasmas , 2013 .

[27]  D. Coster,et al.  Effect of neutral transport on ITER divertor performance , 2005 .

[28]  P. D. Morgan,et al.  Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas , 2012 .

[29]  J. Contributors,et al.  Numerical modelling of high density JET divertor plasma with the SOLPS4.2 (B2-EIRENE) code , 2008 .

[30]  S. Brezinsek,et al.  Spectroscopic measurement of atomic and molecular deuterium fluxes in the DIII-D plasma edge , 2006 .

[31]  V. Kotov,et al.  Formation of a natural X-point multifaceted asymmetric radiation from the edge in numerical simulations of divertor plasmas , 2012 .

[32]  W. Fundamenski,et al.  ELM-averaged power exhaust on JET , 2005 .

[33]  J. Contributors,et al.  Material migration patterns and overview of first surface analysis of the JET ITER-like wall , 2014 .

[34]  L. Horton,et al.  JET carbon screening experiments using methane gas puffing and its relation to intrinsic carbon impurities , 2002 .

[35]  M. Beurskens,et al.  Moderation of divertor heat loads by fuelling and impurity seeding in well-confined ELMy H-mode plasmas on JET , 2011 .

[36]  M. Beurskens,et al.  Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall , 2015 .

[37]  R. Felton,et al.  Fuel retention studies with the ITER-Like Wall in JET , 2013 .

[38]  R. K. Wakerling,et al.  The characteristics of electrical discharges in magnetic fields , 1949 .

[39]  M. Stamp,et al.  Spectroscopic measurements on the Joint European Torus using optical fibers to relay visible radiation , 1985 .

[40]  G. Corrigan,et al.  A study of JET carbon impurity sources , 2009 .

[41]  M. Beurskens,et al.  Impact of carbon and tungsten as divertor materials on the scrape-off layer conditions in JET , 2013 .

[42]  M. N. A. Beurskens,et al.  JET ITER-like wall—overview and experimental programme , 2011 .

[43]  Detlev Reiter,et al.  Progress in two-dimensional plasma edge modelling , 1992 .

[44]  Comparison on heat flux deposition between carbon and tungsten wall – Investigations on energy recycling , 2015 .

[45]  J. Contributors,et al.  Pedestal and ELM response to impurity seeding in JET advanced scenario plasmas , 2008 .

[46]  G. Corrigan,et al.  EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration , 2004 .

[47]  J. Schweinzer,et al.  Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO , 2013 .