Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting

[1]  J. Hirst,et al.  Circular Dichroism in Protein Analysis , 2006 .

[2]  J. W. Park,et al.  Calcium Compounds to Improve Gel Functionality of Pacific Whiting and Alaska Pollock Surimi , 2006 .

[3]  J. Yongsawatdigul,et al.  Purification and characterization of transglutaminase from Tropical tilapia (Oreochromis niloticus) , 2005 .

[4]  J. W. Park,et al.  Surimi and Surimi Seafood , 2005 .

[5]  J. Park,et al.  Surimi gelation chemistry. , 2005 .

[6]  R. Meyers Encyclopedia of molecular cell biology and molecular medicine , 2014 .

[7]  J. Yongsawatdigul,et al.  Thermal denaturation and aggregation of threadfin bream actomyosin , 2003 .

[8]  W. Visessanguan,et al.  Transglutaminase-mediated setting in bigeye snapper Surimi , 2003 .

[9]  J. Yongsawatdigul,et al.  Effect of Endogenous Transglutaminase on Threadfin Bream Surimi Gelation , 2002 .

[10]  J. W. Park,et al.  Gel Forming Ability of Tropical Tilapia Surimi as Compared with Alaska Pollock and Pacific Whiting Surimi , 2000 .

[11]  M. Ogawa,et al.  Raman spectroscopic study of changes in fish actomyosin during setting. , 1999, Journal of agricultural and food chemistry.

[12]  J. Yongsawatdigul,et al.  Thermal aggregation and dynamic rheological properties of Pacific whiting and cod myosins as affected by heating rate , 1999 .

[13]  S. Damodaran,et al.  Food Proteins and Their Applications , 1997 .

[14]  P. B. Kenney,et al.  Protein Extractability of Turkey Breast and Thigh Muscle with Varying Sodium Chloride Solutions as Affected by Calcium, Magnesium and Zinc Chloride , 1996 .

[15]  R. L. Baldwin,et al.  How Hofmeister ion interactions affect protein stability. , 1996, Biophysical journal.

[16]  R M Robson,et al.  Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. , 1995, Journal of animal science.

[17]  T. Tsuchiya,et al.  Alpha-helical structure of fish actomyosin: changes during setting , 1995 .

[18]  H. Saeki Lowering of Thermal Stability of Fish Myoflbrillar Protein Induced by CaCl2 , 1995 .

[19]  D. D. Hamann,et al.  Temperature and pH affect transglutaminase-catalyzed setting of crude fish actomyosin , 1994 .

[20]  J. Yongsawatdigul,et al.  Rheological Behavior and Potential Cross‐Linking of Pacific Whiting (Merluccius productus) Surimi Gel , 1994 .

[21]  N. Seki,et al.  Effect of Calcium Ion Concentration on the Gelling Properties and Transglutaminase Activity of Walleye Pollack Surimi Paste. , 1994 .

[22]  Jonathan C Allen,et al.  Calcium binding and salt-induced structural changes of native and preheated .beta.-lactoglobulin , 1994 .

[23]  A. Paulson,et al.  Thermal Aggregation of Myosin Subfragments from Cod and Herring , 1993 .

[24]  D. D. Hamann,et al.  Nondisulfide covalent cross-linking of myosin heavy chain in "setting" of Alaska pollock and Atlantic croaker surimi , 1992 .

[25]  A. Paulson,et al.  Effect of salt concentration and temperature on heat-induced aggregation and gelation of fish myosin , 1992 .

[26]  Y. Xiong,et al.  GELATION PROPERTIES OF CHICKEN MYOFIBRILS TREATED WITH CALCIUM AND MAGNESIUM CHLORIDES1 , 1991 .

[27]  M. Taylor,et al.  The solubilization of myofibrillar proteins by calcium ions. , 1991, Meat science.

[28]  E. Niwa,et al.  New Type of Myosin Gel Induced by Salts , 1983 .

[29]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[30]  P. V. von Hippel,et al.  On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. , 1965, The Journal of biological chemistry.