A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites

Abstract We combined micro computer tomography with Fe and Si isotope measurements of Mokoia, Allende and Grosnaja chondrules. Ten Mokoia chondrules contain 0.9 to 11.8 vol.% opaque phases (metal + sulfide), and 6 Allende chondrules contain 0.0 to 6.6 vol.% opaque phases. Hence, the Fe isotope composition of many chondrules is dominated by the Fe isotope composition of their opaque phases. We studied Fe isotopes of 35 bulk chondrules. The range is different for each of the three meteorites studied and largest for Allende with δ 56 Fe ranging from − 0.82 to + 0.37‰. Six out of seven chondrules analysed for their Si isotope composition in Mokoia and Grosnaja have similar δ 29 Si of around − 0.12‰. One anomalous chondrule in Mokoia has a δ 29 Si of + 0.58‰. We exclude isotopically heterogeneous chondrule precursors and different isotopic chondrule reservoirs as the source of the observed Fe isotope variation among bulk chondrules. We conclude that the observed bulk chondrule Fe isotope variation is the result of evaporation and re-condensation processes in a nebula setting with high dust densities, required to explain the comparatively low isotope fractionations. Subsequent parent body alteration slightly overprinted this pre-accretionary Fe isotope variation.

[1]  R. Jones,et al.  Chemistry, petrology and bulk oxygen isotope compositions of chondrules from the Mokoia CV3 carbonaceous chondrite , 2009 .

[2]  H. Palme,et al.  The conditions of chondrule formation, Part I: Closed system , 2007 .

[3]  Dominik C. Hezel,et al.  Quantifying the error of 2D bulk chondrule analyses using a computer model to simulate chondrules (SIMCHON) , 2010 .

[4]  S. Russell,et al.  Nebular and asteroidal modification of the iron isotope composition of chondritic components , 2005 .

[5]  S. Taylor,et al.  Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules; implications for heating histories and sources , 2005 .

[6]  S. Majumdar,et al.  Impact of spatial resolution on the prediction of trabecular architecture parameters. , 1998, Bone.

[7]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[8]  D. Brownlee,et al.  Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: Toward a better comprehension of atmospheric entry heating effects , 2005 .

[9]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[10]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[11]  C. Koeberl,et al.  Potassium isotopic composition of Australasian tektites , 2004 .

[12]  R. K. O’nions,et al.  High precision measurement of iron isotopes by plasma source mass spectrometry , 2000 .

[13]  Denton S. Ebel,et al.  Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite , 2008 .

[14]  J. Wasson,et al.  The compositions of chondrules in unequilibrated chondrites an evaluation of models for the formation of chondrules and their precursor materials , 1983 .

[15]  C. Alexander Re‐examining the role of chondrules in producing the elemental fractionations in chondrites , 2005 .

[16]  J. Wasson,et al.  Evidence for primitive nebular components in chondrules from the Chainpur chondrite , 1982 .

[17]  P. Beck,et al.  Isotopic fractionation of zinc in tektites , 2009 .

[18]  F. Richter,et al.  Mg and Si Isotope Fractionation Within Three Type B Ca-Al-rich Inclusions , 2009 .

[19]  R. Ash,et al.  Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes , 2002 .

[20]  A. Davis,et al.  Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects. , 2004, Analytical chemistry.

[21]  Xiaochuan Pan,et al.  Partial volume and aliasing artefacts in helical cone-beam CT. , 2004, Physics in medicine and biology.

[22]  E. Anders Origin, age, and composition of meteorites , 1964 .

[23]  D. Cardinal,et al.  δ30Si and δ29Si Determinations on USGS BHVO‐1 and BHVO‐2 Reference Materials with a New Configuration on a Nu Plasma Multi‐Collector ICP‐MS , 2008 .

[24]  S. Taylor,et al.  Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules , 2001 .

[25]  Diana H. Wall,et al.  Non‐invasive techniques for investigating and modelling root‐feeding insects in managed and natural systems , 2007 .

[26]  F. Ciesla,et al.  The Formation Conditions of Chondrules and Chondrites , 2008, Science.

[27]  M. Frank,et al.  A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes , 1998 .

[28]  T. Kleine,et al.  Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core , 2009 .

[29]  P. Beck,et al.  Isotopic fractionation of Cu in tektites , 2010 .

[30]  M. Rehkämper,et al.  Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS , 2003 .

[31]  F. Shu,et al.  Toward an Astrophysical Theory of Chondrites , 1996, Science.

[32]  A. Needham,et al.  An Fe isotope study of ordinary chondrites , 2009 .

[33]  R. Clayton,et al.  Isotopic composition of silicon in meteorites , 1986 .

[34]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[35]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[36]  Lunar,et al.  Chondrules and their origins , 1983 .

[37]  Lutz Nasdala,et al.  Origin of SiO2-rich components in ordinary chondrites , 2006 .

[38]  J.-L. Pouchou,et al.  Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP” , 1991 .

[39]  G. Libourel,et al.  Gas‐melt interactions and their bearing on chondrule formation , 2002 .

[40]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[41]  A. Davis,et al.  Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation , 2007 .

[42]  Sara S. Russell,et al.  Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations , 2008, 0810.2174.

[43]  H. Palme,et al.  Origin of Chondrules and Matrix in Carbonaceous Chondrites , 1993 .

[44]  G. Libourel,et al.  Role of gas-melt interaction during chondrule formation , 2006 .

[45]  Lutz Nasdala,et al.  Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites , 2003 .

[46]  F. Poitrasson,et al.  Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets [rapid communication] , 2005 .

[47]  B. Glass,et al.  Potassium isotope abundances in Australasian tektites and microtektites , 2008 .

[48]  Ulrich Weser,et al.  Mass fractionation processes of transition metal isotopes , 2002 .

[49]  C. McCammon,et al.  Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity , 2005 .

[50]  M. Bourot‐Denise,et al.  The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .

[51]  C. Alexander,et al.  Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation , 2001 .

[52]  R. T. Helz,et al.  Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake , 2008, Science.

[53]  W. Hanafee,et al.  Computed Tomography of the Temporal Bone and Orbit , 1988 .

[54]  R. Carlson,et al.  High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS , 2003 .

[55]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[56]  E. Anders,et al.  Chemical fractionations in meteorites—III. Major element fractionations in chondrites , 1970 .

[57]  J. Cuzzi,et al.  Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across , 2006, Nature.

[58]  R. K. O’nions,et al.  Isotopic homogeneity of iron in the early solar nebula , 2001, Nature.

[59]  Larry R. Nittler,et al.  Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy , 2007 .

[60]  K. Turekian,et al.  Meteorites, Comets and Planets: Treatise on Geochemistry, Volume 1 , 2005 .

[61]  F. Poitrasson,et al.  Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms , 2004 .

[62]  C. Alexander Exploration of quantitative kinetic models for the evaporation of silicate melts in vacuum and in hydrogen , 2001 .

[63]  H. Palme,et al.  The chemical relationship between chondrules and matrix and the chondrule matrix complementarity , 2010 .

[64]  R. B. Georg,et al.  New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS , 2006 .

[65]  Jeffrey N. Grossman,et al.  Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites , 1983 .

[66]  J. Grossman,et al.  Alkali elemental and potassium isotopic compositions of Semarkona chondrules , 2005 .

[67]  Dominik C. Hezel,et al.  Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites , 2008 .

[68]  F. Albarède,et al.  Formation of solar nebula reservoirs by mixing chondritic components , 2006 .

[69]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[70]  R. B. Georg,et al.  Silicon in the Earth’s core , 2007, Nature.

[71]  B. Beard,et al.  Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies , 2004 .

[72]  Melanie J. Leng,et al.  An inter-laboratory comparison of Si isotope reference materials , 2007 .

[73]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[74]  F. Zonneveld,et al.  Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. , 1993, American journal of physical anthropology.

[75]  Dominik C. Hezel,et al.  A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules , 2007, Comput. Geosci..

[76]  R. Ash,et al.  Oxygen Isotope Systematics in Allende Chondrules , 1999 .

[77]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[78]  R. Ash,et al.  The formation of chondrules at high gas pressures in the solar nebula. , 2000, Science.

[79]  Adrian J. Brearley,et al.  The Action of Water , 2006 .