Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem

[1]  J. Osborn Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .

[2]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[3]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[4]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[7]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[8]  M. Krízek Conforming finite element approximation of the Stokes problem , 1990 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[12]  Ricardo G. Durán,et al.  A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .

[13]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[14]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Constantin Bacuta,et al.  Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains , 2003 .

[17]  Raytcho D. Lazarov,et al.  Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .

[18]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[19]  Qun Lin,et al.  New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements , 2008, Math. Comput..

[20]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[21]  Hehu Xie,et al.  Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method , 2009 .

[22]  Fang,et al.  A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHROEDINGER EQUATION , 2009 .

[23]  Hehu Xie,et al.  Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .

[24]  Francesca Gardini Mixed approximation of eigenvalue problems: A superconvergence result , 2009 .

[25]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[26]  Li Tiancheng,et al.  アルゴリズム906: elrint3d―組み込み格子ルールのシーケンスを用いる三次元非適応自動立体求積法ルーチン , 2011 .

[27]  F. Chatelin Spectral approximation of linear operators , 2011 .