On the benefits of delayed ordering
暂无分享,去创建一个
Ruud H. Teunter | Aris A. Syntetos | M. Zied Babai | M. Z. Babai | Sandra Transchel | A. Syntetos | R. Teunter | S. Transchel
[1] Sven Axsäter,et al. DECENTRALIZED MULTIECHELON INVENTORY CONTROL , 1998 .
[2] K. Moinzadeh,et al. Batch size and stocking levels in multi-echelon repairable systems , 1986 .
[3] Carl R. Schultz. Replenishment Delays for Expensive Slow-Moving Items , 1989 .
[4] Yash P. Aneja,et al. The optimality of ( s,S ) policies for a stochastic inventory problem with proportional and lump-sum penalty cost , 1987 .
[5] Leo W. G. Strijbosch,et al. A combined forecast—inventory control procedure for spare parts , 2000, J. Oper. Res. Soc..
[6] Alan Bickers. Managing the Consultant , 1991 .
[7] Rommert Dekker,et al. An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods , 2008, Eur. J. Oper. Res..
[8] Kamran Moinzadeh,et al. Operating characteristics of a two‐echelon inventory system for repairable and consumable items under batch ordering and shipment policy , 1987 .
[9] Kamran Moinzadeh,et al. Incorporating a delay mechanism in ordering policies into multi-echelon distribution systems , 2008 .
[10] Izzet Sahin. Regenerative inventory systems , 1990 .
[11] D. Iglehart. Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem , 1963 .
[12] Paul H. Zipkin,et al. Estimating the Performance of Multi-Level Inventory Systems , 1988, Oper. Res..
[13] Carl R. Schultz. Forecasting and Inventory Control for Sporadic Demand Under Periodic Review , 1987 .
[14] Liming Liu,et al. An (s, S) model for inventory with exponential lifetimes and renewal demands , 1999 .
[15] Johan Marklund,et al. Heuristic Coordination of Decentralized Inventory Systems Using Induced Backorder Costs , 2009 .
[16] Sven Axsäter,et al. On the value of customer information for an independent supplier in a continuous review inventory system , 2012, Eur. J. Oper. Res..
[17] Rainer Kleber,et al. An Advanced Heuristic for Multiple‐Option Spare Parts Procurement after End‐of‐Production , 2013 .
[18] Kamran Moinzadeh,et al. An improved ordering policy for continuous review inventory systems with arbitrary inter-demand time distributions , 2001 .
[19] Sven Axsäter,et al. Exact Analysis of Continuous Review (R, Q) Policies in Two-Echelon Inventory Systems with Compound Poisson Demand , 2000, Oper. Res..
[20] Søren Glud Johansen,et al. Can-order policies for coordinated inventory replenishment with Erlang distributed times between ordering , 1999, Eur. J. Oper. Res..
[21] G. J. Goodhardt,et al. A Consumer Purchasing Model with Erlang Inter-Purchase Times , 1973 .
[22] W. J. Kennedy,et al. An overview of recent literature on spare parts inventories , 2002 .
[23] Aris A. Syntetos,et al. Classification for forecasting and stock control: a case study , 2008, J. Oper. Res. Soc..
[24] Roberto Verganti,et al. A simulation framework for forecasting uncertain lumpy demand , 1999 .
[25] S. Lalley. RENEWAL THEORY , 2014 .
[26] Johan Marklund,et al. A model for heuristic coordination of real life distribution inventory systems with lumpy demand , 2013, Eur. J. Oper. Res..
[27] Yves Dallery,et al. Periodic control of intermittent demand items: theory and empirical analysis , 2009, J. Oper. Res. Soc..