Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics

We applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000 K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500 K.

[1]  R. L. Stoute,et al.  Effect of porosity on the thermal conductivity of UO2 , 1967 .

[2]  S. Chaplot,et al.  Atomistic modeling of the vibrational and thermodynamic properties of uranium dioxide, UO2 , 2008 .

[3]  P. Masri,et al.  Thermodynamic properties of uranium dioxide: Electronic contributions to the specific heat , 1980 .

[4]  R. Cowley,et al.  THE CRYSTAL DYNAMICS OF URANIUM DIOXIDE , 1965 .

[5]  K. Jin,et al.  First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide , 2011, 1111.4548.

[6]  D. L. McElroy,et al.  Thermal Conductivity of Nearly Stoichiometric Single‐Crystal and Polycrystalline UO2 , 1971 .

[7]  G. Petot-ervas,et al.  Thermal variation of the optical absorption of UO2: determination of the small polaron self-energy , 2004 .

[8]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .

[9]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[10]  S. Pennycook,et al.  Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4 , 2012 .

[11]  Mengqiu Long,et al.  Anisotropic Thermal Transport in Organic Molecular Crystals from Nonequilibrium Molecular Dynamics Simulations , 2011 .

[12]  Kenichi Ito,et al.  Thermal conductivities of irradiated UO2 and (U, Gd)O2 pellets , 2002 .

[13]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[14]  John H. Harding,et al.  A recommendation for the thermal conductivity of UO2 , 1989 .

[15]  K. Une,et al.  Thermal conductivities of irradiated UO2 and (U,Gd)O2 , 2001 .

[16]  Jianguo Yu,et al.  Energetic recoils in UO2 simulated using five different potentials. , 2009, The Journal of chemical physics.

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  K. Idemitsu,et al.  Equilibrium and nonequilibrium molecular dynamics simulations of heat conduction in uranium oxide and mixed uranium-plutonium oxide , 2008 .

[19]  R. N. Hampton,et al.  The pressure dependence of the dielectric constant and electrical conductivity of single crystal uranium dioxide , 1987 .

[20]  James S. Tulenko,et al.  Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .

[21]  Philippe Garcia,et al.  First-principles calculations of uranium diffusion in uranium dioxide , 2012 .

[22]  C. Hinman,et al.  Electrical Conductivity of Uranium Dioxide , 1967 .

[23]  A. M. George,et al.  Thermal conductivity of uranium dioxide , 1993 .

[24]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[25]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[26]  N. Padture,et al.  Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .

[27]  L. Stixrude,et al.  Thermal conductivity of periclase (MgO) from first principles. , 2010, Physical review letters.

[28]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[29]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[30]  William Schotte,et al.  Thermal conductivity of packed beds , 1960 .

[31]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[32]  M. Kaviany,et al.  Structural metrics of high-temperature lattice conductivity , 2006 .

[33]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[34]  Akio Kotani,et al.  Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides , 1992 .

[35]  Kazuhiro Yamada,et al.  Evaluation of thermal properties of uranium dioxide by molecular dynamics , 2000 .

[36]  J. Harding,et al.  Small-polaron hopping in Mott-insulating UO2 , 1994 .

[37]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[38]  M. Kaviany Heat Transfer Physics: Abbreviations , 2008 .

[39]  M. J. Wheeler,et al.  The high-temperature thermal conductivity of sintered uranium dioxide , 1968 .

[40]  D. Mcelroy,et al.  Thermal Conductivity of Uranium Dioxide from ‐57° to 1100°C by a Radial Heat Flow Technique , 1965 .

[41]  V. Rondinella,et al.  The high burn-up structure in nuclear fuel , 2010 .

[42]  R. Taylor,et al.  Effect of porosity and stoichiometry on the thermal conductivity of uranium dioxide , 1974 .

[43]  Y. Ichikawa,et al.  Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation , 1999 .

[44]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[45]  D. Cahill,et al.  Low thermal conductivity of CsBiNb2O7 epitaxial layers , 2010 .

[46]  Claudio Ronchi,et al.  Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide. , 2007, The Journal of chemical physics.

[47]  W. Fulkerson,et al.  THERMAL CONDUCTIVITY OF URANIUM DIOXIDE AND ARMCO IRON BY AN IMPROVED RADIAL HEAT FLOW TECHNIQUE , 1964 .

[48]  H. S. Kamath,et al.  Classical molecular dynamics simulation of UO2 to predict thermophysical properties , 2003 .

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  M. Lumsden,et al.  Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.

[51]  P. W. Tasker The surface properties of uranium dioxide , 1979 .

[52]  R. B. Asamoto,et al.  The effect of density on the thermal conductivity of uranium dioxide , 1969 .

[53]  J. Devreese,et al.  Electronic Conduction in Single Crystals of Uranium Dioxide , 1964 .

[54]  G. Petot-ervas,et al.  Electrical Conductivity and Thermoelectric Power of Uranium Dioxide , 2005 .

[55]  B. Veal,et al.  X-ray photoelectron studies of thorium, uranium, and their dioxides , 1974 .

[56]  Ying Chen,et al.  First principles modeling of stability mechanism of nonstoichiometric uranium dioxide , 2010 .

[57]  S. Aronson,et al.  Electrical Properties of Nonstoichiometric Uranium Dioxide , 1961 .

[58]  W. M. Temmerman,et al.  Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC‐LSDA and EELS Study of UO2 and NiO , 1998 .

[59]  L. Goldsmith,et al.  Measurements of the thermal conductivity of uranium dioxide at 670 1270 k , 1973 .

[60]  Julian D. Gale,et al.  Quantum mechanical vs. empirical potential modeling of uranium dioxide (UO2) surfaces: (111), (110), and (100) , 2006 .

[61]  S. Savrasov,et al.  Origin of low thermal conductivity in nuclear fuels. , 2008, Physical review letters.

[62]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[63]  M. Krack,et al.  A procedure for bypassing metastable states in local basis set DFT+U calculations and its application to uranium dioxide surfaces , 2013 .

[64]  D. Legut,et al.  Phonon spectrum, thermal expansion and heat capacity of UO2 from first-principles , 2011, 1110.0984.

[65]  M. Kaviany,et al.  Coupled polaron-phonon effects on Seebeck coefficient and lattice conductivity of B13C2 from first principles , 2013 .

[66]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[67]  B. Willis Neutron diffraction studies of the actinide oxides II. Thermal motions of the atoms in uranium dioxide and thorium dioxide between room temperature and 1100 °C , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  C. Ronchi,et al.  Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity. , 1999 .

[69]  H. Schmidt Some considerations on the thermal conductivity of stoichiometric uranium dioxide at high temperatures , 1971 .

[70]  D. G. Martin,et al.  The thermal expansion of solid UO2 and (U, Pu) mixed oxides — a review and recommendations , 1988 .

[71]  Boris Dorado,et al.  Stability of oxygen point defects in UO 2 by first-principles DFT + U calculations: Occupation matrix control and Jahn-Teller distortion , 2010 .

[72]  J. Devreese,et al.  On the Conduction Mechanism in Uranium Dioxide , 1966 .

[73]  Tatsumi Arima,et al.  Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K , 2005 .

[74]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[75]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[76]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .