Fully nonlinear long-wave models in the presence of vorticity

Abstract We study here Green–Naghdi type equations (also called fully nonlinear Boussinesq, or Serre equations) modelling the propagation of large-amplitude waves in shallow water without a smallness assumption on the amplitude of the waves. The novelty here is that we allow for a general vorticity, thereby allowing complex interactions between surface waves and currents. We show that the a priori ( $2+1$ )-dimensional dynamics of the vorticity can be reduced to a finite cascade of two-dimensional equations. With a mechanism reminiscent of turbulence theory, vorticity effects contribute to the averaged momentum equation through a Reynolds-like tensor that can be determined by a cascade of equations. Closure is obtained at the precision of the model at the second order of this cascade. We also show how to reconstruct the velocity field in the ( $2+1$ )-dimensional fluid domain from this set of two-dimensional equations and exhibit transfer mechanisms between the horizontal and vertical components of the vorticity, thus opening perspectives for the study of rip currents, for instance.

[1]  P. Milewski,et al.  Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations , 2011, European Journal of Applied Mathematics.

[2]  Yi Li A shallow‐water approximation to the full water wave problem , 2006 .

[3]  Philippe Bonneton,et al.  A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .

[4]  L. Ovsjannikov Cauchy problem in a scale of banach spaces and its application to the shallow water theory justification , 1976 .

[5]  Adrian Constantin,et al.  Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis , 2011 .

[6]  Mario Ricchiuto,et al.  Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries , 2013, J. Comput. Phys..

[7]  N. Scheffner,et al.  A note on the generation and narrowness of periodic rip currents , 1991 .

[8]  Rosaria Ester Musumeci,et al.  The flow in the surf zone: a fully nonlinear Boussinesq-type of approach , 2005 .

[9]  Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity , 2014, 1402.0464.

[10]  William C. Webster,et al.  On direct methods in water-wave theory , 1988, Journal of Fluid Mechanics.

[11]  O. Pironneau,et al.  Analysis of the K-epsilon turbulence model , 1994 .

[12]  Olivier Pironneau,et al.  Analysis of the K-Epsilon Turbulence , 1993 .

[13]  Philippe Bonneton,et al.  Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation , 2009 .

[14]  Philippe Bonneton,et al.  Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes , 2011 .

[15]  E. Wahlén Steady water waves with a critical layer , 2009 .

[16]  Eugen Varvaruca,et al.  Steady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation , 2009, 0910.0618.

[17]  I. A. Svendsen,et al.  The flow in surf-zone waves , 2000 .

[18]  D. Lannes,et al.  A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model , 2010, J. Comput. Phys..

[19]  M. Longuet-Higgins Longshore currents generated by obliquely incident sea waves: 1 , 1970 .

[20]  Tatsuo Iguchi,et al.  A shallow water approximation for water waves , 2009 .

[21]  A. Newell,et al.  Single‐domain critical sizes for coercivity and remanence , 1999 .

[22]  S. Gavrilyuk,et al.  A new model of roll waves: comparison with Brock’s experiments , 2012, Journal of Fluid Mechanics.

[23]  Sergey L. Gavrilyuk,et al.  A numerical scheme for the Green-Naghdi model , 2010, J. Comput. Phys..

[24]  J. Kirby,et al.  Boussinesq modeling of a rip current system , 1999 .

[25]  Tadayoshi Kano,et al.  Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .

[26]  I. Nikolos,et al.  An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations , 2012 .

[27]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION , BREAKING , AND RUNUP . II : 2 D By , 1999 .

[28]  S. Socolofsky,et al.  A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows , 2009 .

[29]  David Lannes,et al.  Large time existence for 3D water-waves and asymptotics , 2007, math/0702015.

[30]  S. Gavrilyuk,et al.  The classical hydraulic jump in a model of shear shallow-water flows , 2013, Journal of Fluid Mechanics.

[31]  D. Lannes,et al.  A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations , 2015, J. Comput. Phys..

[32]  Geometric evolution of the Reynolds stress tensor , 2010 .

[33]  I. A. Svendsen,et al.  Surf-Zone Hydrodynamics , 1995 .

[34]  Robert A. Dalrymple,et al.  Boussinesq modeling of longshore currents , 2003 .

[35]  Anthony,et al.  The Generation of Longshore Currents on a Plane Beach , 2022 .

[36]  Gas-dynamic analogy in the theory of stratified liquid flows with a free boundary , 2007 .

[37]  William C. Webster,et al.  A derivation of the Green-Naghdi equations for irrotational flows , 2001 .

[38]  Joannes J. Westerink,et al.  Boussinesq-Green-Naghdi rotational water wave theory , 2013 .

[39]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .

[40]  David Lannes,et al.  The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .

[41]  Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence , 2009, 0903.4949.

[42]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .