Optimal Feedback Control: Foundations, Examples, and Experimental Results for a New Approach

Typical optimal feedback controls are nonsmooth functions. Nonsmooth controls raise fundamental theoretical problems on the existence and uniqueness of state trajectories. Many of these problems are frequently addressed in control applications through the concept of a Filippov solution. In recent years, the simpler concept of a π solution has emerged as a practical and powerful means to address these theoretical issues. In this paper, we advance the notion of Caratheodory-π- solutions that stem from the equivalence between closed-loop and feedback trajectories. In recognizing that feedback controls are not necessarily closed-form expressions, we develop a sampling theorem that indicates that the Lipschitz constant of the dynamics is a fundamental sampling frequency. These ideas lead to a new set of foundations for achieving feedback wherein optimality principles are interwoven to achieve stability and system performance, whereas the computation of optimal controls is at the level of first principles. We demonstrate these principles by way of pseudospectral methods because these techniques can generate Caratheodory-π solutions at a sufficiently fast sampling rate even when implemented in a MATLAB® environment running on legacy computer hardware. To facilitate an exposition of the proposed ideas to a wide audience, we introduce the core principles only and relegate the intricate details to numerous recent references. These principles are then applied to generate pseudospectral feedback controls for the slew maneuvering of NPSAT1, a spacecraft conceived, designed, and built at the Naval Postgraduate School and scheduled to be launched in fall 2007.

[1]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[2]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[3]  L. Weiss,et al.  Finite time stability under perturbing forces and on product spaces , 1967, IEEE Transactions on Automatic Control.

[4]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[5]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[6]  J. R. Thibodeau,et al.  Space Shuttle ascent guidance, navigation, and control , 1979 .

[7]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[8]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[11]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[12]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[13]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[14]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[15]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[16]  Giuseppe Oriolo,et al.  Stabilization via iterative state steering with application to chained-form systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[18]  P. Binding,et al.  On Carathéodory’s conditions for the initial value problem , 1997 .

[19]  Héctor J. Sussmann,et al.  Geometry and optimal control , 1998 .

[20]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[21]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[22]  C. Samson,et al.  EXPONENTIAL STABILIZATION OF NONLINEAR DRIFTLESS SYSTEMS WITH ROBUSTNESS TO UNMODELED DYNAMICS , 1999 .

[23]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[24]  Héctor J. Sussmann,et al.  Regular Synthesis and Sufficiency Conditions for Optimality , 2000, SIAM J. Control. Optim..

[25]  Jack E. Volder The Birth of Cordic , 2000, J. VLSI Signal Process..

[26]  W. Hager Numerical Analysis in Optimal Control , 2001 .

[27]  Benedetto Piccoli,et al.  Regular syntheses and solutions to discontinuous ODEs , 2002 .

[28]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[29]  I. Michael Ross,et al.  Rapid Verification Method for the Trajectory Optimization of Reentry Vehicles , 2003 .

[30]  Jeremy Rea,et al.  Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method , 2003 .

[31]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[32]  Ping Lu,et al.  Closed-loop endoatmospheric ascent guidance , 2003 .

[33]  A. D. Ngo,et al.  Footprint generation for reusable launch vehicles using a direct pseudospectral method , 2003, Proceedings of the 2003 American Control Conference, 2003..

[34]  Andrew Fleming,et al.  Real-time optimal slew maneuver design and control , 2004 .

[35]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[36]  David Doman,et al.  A Direct Method for Approach and Landing Trajectory Reshaping with Failure Effect Estimation , 2004 .

[37]  Michael Malisoff,et al.  Optimal Control, Stabilization and Nonsmooth Analysis , 2004 .

[38]  Frank H. Clarke Lyapunov Functions and Feedback in Nonlinear Control , 2004 .

[39]  I. Michael Ross,et al.  Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.

[40]  I. Michael Ross,et al.  Design and Control of Libration Point Spacecraft Formations , 2004 .

[41]  Eric W. Herbert NPSAT1 Magnetic Attitude Control System Algorithm Verification, Validation, and Air-Bearing Tests , 2004 .

[42]  I.M. Ross,et al.  Time-optimal nonlinear feedback control for the NPSAT1 spacecraft , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[43]  Robert Stevens,et al.  Preliminary Design of Earth-Mars Cyclers Using Solar Sails , 2005 .

[44]  David B. Doman,et al.  Optimal Trajectory Reconfiguration and Retargeting for Reusable Launch Vehicles , 2005 .

[45]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[46]  I. Michael Ross A Roadmap for Optimal Control: The Right Way to Commute , 2005, Annals of the New York Academy of Sciences.

[47]  I. Michael Ross AAS 05-332 A HISTORICAL INTRODUCTION TO THE COVECTOR MAPPING PRINCIPLE , 2005 .

[48]  Ludovic Rifford Stratified semiconcave control-Lyapunov functions and the stabilization problem , 2005 .

[49]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[50]  I. Michael Ross 6 – Space Trajectory Optimization and L1-Optimal Control Problems , 2006 .

[51]  I. Michael Ross,et al.  Optimal Nonlinear Feedback Guidance for Reentry Vehicles , 2006 .

[52]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[53]  Wei Kang,et al.  Practical stabilization through real-time optimal control , 2006, 2006 American Control Conference.

[54]  Qi Gong,et al.  Unscented Kalman Filtering: NPSAT1 Ground Test Results , 2006, AIAA Guidance, Navigation, and Control Conference and Exhibit.

[55]  I. Michael Ross,et al.  Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..

[56]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[57]  David B. Doman,et al.  Fault Tolerant Optimal Trajectory Generation for Reusable Launch Vehicles (Preprint) , 2006 .

[58]  Fariba Fahroo On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .

[59]  Qi Gong,et al.  Low-Thrust, High-Accuracy Trajectory Optimization , 2007, Journal of Guidance, Control, and Dynamics.

[60]  I. Michael Ross,et al.  On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems , 2007 .

[61]  Wei Kang,et al.  A Pseudospectral Observer for Nonlinear Systems , 2005 .

[62]  Wei Kang,et al.  Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA $1M in Under Three Hours , 2007 .

[63]  L. Ryan Lewis,et al.  Collision-Free Multi-UAV Optimal Path Planning and Cooperative Control for Tactical Applications , 2008 .

[64]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[65]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[66]  I. Michael Ross,et al.  Convergence of the Costates Does Not Imply Convergence of the Control , 2008, Journal of Guidance, Control, and Dynamics.

[67]  I. Michael Ross,et al.  Pseudospectral Motion Planning for Autonomous Vehicles , 2009 .

[68]  I. Michael Ross,et al.  Minimum-Time Reorientation of a Rigid Body , 2010 .

[69]  Paul Williams,et al.  Optimal Control of Electrodynamic Tether Orbit Transfers Using Timescale Separation , 2010 .