A proof of strongly uniform termination for Gödel's $T$ by methods from local predicativity

Abstract. We estimate the derivation lengths of functionals in Gödel's system $T$ of primitive recursive functionals of finite type by a purely recursion-theoretic analysis of Schütte's 1977 exposition of Howard's weak normalization proof for $T$. By using collapsing techniques from Pohlers' local predicativity approach to proof theory and based on the Buchholz-Cichon and Weiermann 1994 approach to subrecursive hierarchies we define a collapsing f unction ${\cal D}:T\to \omega$ so that for (closed) terms $a,b$ of Gödel's $T$ we have: If $a$ reduces to $b$ then $\omega>{\cal D}(a)>{\cal D}(b).$ By one uniform proof we obtain as corollaries: A derivation lengths classification for functionals in $T$, hence new proof of strongly uniform termination of $T$. A new proof of the Kreisel's classific ation of the number-theoretic functions which can be defined in $T$, hence a classification of the provably total functions of Peano Arithmetic. A new proof of Tait's results on weak normalization for $T$. A new proof of Troelstra's result on strong normalization for $T$. Additionally, a slow growing analysis of Gödel's $T$ is obtained via Girard's hierarchy comparison theorem. This analyis yields a contribution to two open pro blems posed by Girard in part two of his book on proof theory. For the sake of completeness we also mention the Howard Schütte bound on derivation lengths for the simple typed $\lambda$-calculus.

[1]  Andreas Weiermann,et al.  How to characterize provably total functions by local predicativity , 1996, Journal of Symbolic Logic.

[2]  Toshiyasu Arai Variations on a Theme by Weiermann , 1998, J. Symb. Log..

[3]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[4]  S. S. Wainer,et al.  A classification of the ordinal recursive functions , 1970 .

[5]  William A. Howard,et al.  Ordinal analysis of terms of finite type , 1980, Journal of Symbolic Logic.

[6]  W. A. Howard Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .

[7]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[8]  William A. Howard,et al.  Ordinal analysis of simple cases of bar recursion , 1981, Journal of Symbolic Logic.

[9]  H. Schwichtenberg Proofs as programs , 1993 .

[10]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[11]  Andreas Weiermann Vereinfachte Kollabierungsfunktionen und ihre Anwendungen , 1991, Arch. Math. Log..

[12]  Wolfram Pohlers Pure proof theory, aims, methods and results , 1996, Bull. Symb. Log..

[13]  W. Tait Infinitely Long Terms of Transfinite Type , 1965 .

[14]  Anil Nerode,et al.  Logical Foundations of Computer Science — Tver '92 , 1992, Lecture Notes in Computer Science.

[15]  Ulf R. Schmerl Number Theory and the Bachmann/Howard Ordinal , 1982 .

[16]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[17]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[18]  Helmut Schwichtenberg Eine Klassifikation der e0-rekursiven Funktionen , 1971 .

[19]  Wolfram Pohlers,et al.  Proof theory and ordinal analysis , 1991, Arch. Math. Log..

[20]  Andreas Weiermann,et al.  A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..

[21]  Wilfried Buchholz,et al.  An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..

[22]  Luis E. Sanchis,et al.  Functionals defined by recursion , 1967, Notre Dame J. Formal Log..

[23]  Daniel Leivant Predicative Recurrence in Finite Types , 1994, LFCS.

[24]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[25]  Helmut Schwichtenberg,et al.  Strict Functionals for Termination Proofs , 1995, TLCA.

[26]  J. Diller,et al.  Zur Berechenbarkeit Primitiv-Rekursiver Funktionale Endlicher Typen , 1968 .

[27]  Helmut Schwichtenberg,et al.  Ordinal Bounds for Programs , 1995 .

[28]  Helmut Schwichtenberg,et al.  Elimination of higher type levels in definitions of primitive recursive functionals , 1975 .

[29]  Andreas Weiermann Bounding derivation lengths with functions from the slow growing hierarchy , 1998, Arch. Math. Log..

[30]  Toshiyasu Arai Consistency proof via pointwise induction , 1998, Arch. Math. Log..

[31]  Dag Prawitz,et al.  Towards A Foundation of A General Proof Theory , 1973 .

[32]  Toshiyasu Arai A Slow Growing Analogue to Buchholz' Proof , 1991, Ann. Pure Appl. Log..

[33]  J. Girard Proof Theory and Logical Complexity , 1989 .