Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology

Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.

[1]  Arijitt Borthakur,et al.  23Na MRI accurately measures fixed charge density in articular cartilage , 2002, Magnetic resonance in medicine.

[2]  R. Meyer,et al.  A linear model of muscle respiration explains monoexponential phosphocreatine changes. , 1988, The American journal of physiology.

[3]  S Trattnig,et al.  Assessment of 31P relaxation times in the human calf muscle: A comparison between 3 T and 7 T in vivo , 2009, Magnetic resonance in medicine.

[4]  S Robinson,et al.  Optimized 3 T EPI of the amygdalae , 2004, NeuroImage.

[5]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[6]  Michael B. Smith,et al.  Calculations of B1 distribution, SNR, and SAR for a surface coil adjacent to an anatomically‐accurate human body model , 2001, Magnetic resonance in medicine.

[7]  Ming Ding,et al.  Age‐related variations in the microstructure of human tibial cancellous bone , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[8]  Ewald Moser,et al.  Direct noninvasive quantification of lactate and high energy phosphates simultaneously in exercising human skeletal muscle by localized magnetic resonance spectroscopy , 2007, Magnetic resonance in medicine.

[9]  Yukihiko Fujii,et al.  In Vivo Visualization of Senile‐Plaque‐Like Pathology in Alzheimer's Disease Patients by MR Microscopy on a 7T System , 2008, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[10]  Sharmila Majumdar,et al.  Rapid in vivo musculoskeletal MR with parallel imaging at 7T , 2008, Magnetic resonance in medicine.

[11]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[12]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Lozano,et al.  Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. , 2010, Journal of neurosurgery.

[14]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[15]  A. Maroudas,et al.  The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. , 1969, Biochimica et biophysica acta.

[16]  Joseph S. Yu,et al.  In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla , 2002, Skeletal Radiology.

[17]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[18]  Markus Barth,et al.  High-Resolution Three-Dimensional Contrast-Enhanced Blood Oxygenation Level-Dependent Magnetic Resonance Venography of Brain Tumors at 3 Tesla: First Clinical Experience and Comparison with 1.5 Tesla , 2003, Investigative radiology.

[19]  Leif Groop,et al.  Impaired Mitochondrial Function and Insulin Resistance of Skeletal Muscle in Mitochondrial Diabetes , 2009, Diabetes Care.

[20]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Christian Windischberger,et al.  Magnetic resonance imaging methodology , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  Arijitt Borthakur,et al.  Quantifying sodium in the human wrist in vivo by using MR imaging. , 2002, Radiology.

[23]  G K Radda,et al.  Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. , 1994, Magnetic resonance quarterly.

[24]  Lohmander Ls,et al.  Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. , 1994 .

[25]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[26]  K. Uğurbil,et al.  Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. , 2006, Magnetic resonance imaging.

[27]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[28]  Ewald Moser,et al.  Ultra-high-field magnetic resonance: Why and when? , 2010, World journal of radiology.

[29]  Silvia Mangia,et al.  Metabolic and Hemodynamic Events after Changes in Neuronal Activity: Current Hypotheses, Theoretical Predictions and in vivo NMR Experimental Findings , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  U. Sailer,et al.  A resting state network in the motor control circuit of the basal ganglia , 2009, BMC Neuroscience.

[31]  John A Skinner,et al.  Diagnostic comparison of 1.5 Tesla and 3.0 Tesla preoperative MRI of the wrist in patients with ulnar-sided wrist pain. , 2008, The Journal of hand surgery.

[32]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[33]  G J Kemp,et al.  Studying metabolic regulation in human muscle. , 2000, Biochemical Society transactions.

[34]  Wei Chen,et al.  Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain , 2007, Magnetic Resonance in Medicine.

[35]  Brigitte Röder,et al.  On the relationship between slow cortical potentials and BOLD signal changes in humans. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[36]  P. Roughley,et al.  Cartilage proteoglycans: Structure and potential functions , 1994, Microscopy research and technique.

[37]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[38]  S Maderwald,et al.  The human hippocampus at 7 T—In vivo MRI , 2009, Hippocampus.

[39]  Claus Lamm,et al.  Time-resolved analysis of fMRI signal changes using Brain Activation Movies , 2008, Journal of Neuroscience Methods.

[40]  Herbert Bauer,et al.  Technical requirements for long-time DC-EEG recordings , 1989 .

[41]  Matthew J. Brookes,et al.  Understanding gradient artefacts in simultaneous EEG/fMRI , 2009, NeuroImage.

[42]  Thomas M Link,et al.  Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T. , 2007, AJR. American journal of roentgenology.

[43]  Louis Lemieux,et al.  Present and future of simultaneous EEG-fMRI , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[44]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[45]  S. Dehaene,et al.  Levels of processing during non-conscious perception: a critical review of visual masking , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Jens Frahm,et al.  COMMENTS AND CONTROVERSIES Functional MRI of the Human Amygdala , 2001 .

[47]  R. Fields,et al.  ATP: an extracellular signaling molecule between neurons and glia , 2000, Trends in Neurosciences.

[48]  Peter Andersen,et al.  Whole‐body imaging at 7T: Preliminary results , 2009, Magnetic resonance in medicine.

[49]  Ravinder R Regatte,et al.  In vivo 7.0-tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. , 2009, Seminars in musculoskeletal radiology.

[50]  K. Uğurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T , 2009, Magnetic resonance in medicine.

[51]  C D Claussen,et al.  3.0 T high-resolution MR imaging of carpal ligaments and TFCC , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[52]  Jing He,et al.  Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. , 2009, Archives of neurology.

[53]  Arend Heerschap,et al.  Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[54]  Felix Eckstein,et al.  Advances of 3T MR imaging in visualizing trabecular bone structure of the calcaneus are partially SNR‐independent: Analysis using simulated noise in relation to micro‐CT, 1.5T MRI, and biomechanical strength , 2009, Journal of magnetic resonance imaging : JMRI.

[55]  P. Röschmann,et al.  Spectroscopy and imaging with a 4 tesla whole‐body mr system , 1988, NMR in biomedicine.

[56]  Steven A. Goldstein,et al.  Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone , 2005, Calcified Tissue International.

[57]  Oliver Bieri,et al.  23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. , 2010, Radiology.

[58]  H J Mankin,et al.  Biochemical and metabolic aspects of osteoarthritis. , 1971, The Orthopedic clinics of North America.

[59]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[60]  J Debus,et al.  [High resolution MR-venography of cerebral arteriovenous malformations]. , 1999, Der Radiologe.

[61]  D. Hoult,et al.  The field dependence of NMR imaging. I. Laboratory assessment of signal‐to‐noise ratio and power deposition , 1986, Magnetic resonance in medicine.

[62]  J. Changeux,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.5 May 2006 Conscious, preconscious, and subliminal processing: a testable taxonomy , 2022 .

[63]  P. Börnert,et al.  Transmit SENSE , 2003, Magnetic resonance in medicine.

[64]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[65]  C N Chen,et al.  The field dependence of NMR imaging. II. Arguments concerning an optimal field strength , 1986, Magnetic resonance in medicine.

[66]  Ewald Moser,et al.  Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review , 2007, NMR in biomedicine.

[67]  Ewald Moser,et al.  Bone Homogeneity Factor: An Advanced Tool for the Assessment of Osteoporotic Bone Structure in High-Resolution Magnetic Resonance Images , 2003, Investigative radiology.

[68]  S. Majumdar,et al.  Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla , 2006, Magnetic resonance in medicine.

[69]  L S Lohmander,et al.  Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. , 1994, Journal of anatomy.

[70]  K. Uğurbil,et al.  Efficient high‐frequency body coil for high‐field MRI , 2004, Magnetic resonance in medicine.

[71]  H. Bauer,et al.  Operant conditioning of brain steady potential shifts in man , 1979, Biofeedback and self-regulation.

[72]  Ewald Moser,et al.  The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the Default Mode , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[73]  S Warach,et al.  Monitoring the patient's EEG during echo planar MRI. , 1993, Electroencephalography and clinical neurophysiology.

[74]  Y. van der Graaf,et al.  Total Cerebral Blood Flow and Hippocampal Volume in Patients with Arterial Disease. the SMART-MR Study , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[75]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[76]  Yudong Zhu,et al.  Parallel excitation with an array of transmit coils , 2004, Magnetic resonance in medicine.

[77]  E Moser,et al.  Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment , 2008, NMR in biomedicine.

[78]  T. Dufresne,et al.  Risedronate Preserves Trabecular Architecture and Increases Bone Strength in Vertebra of Ovariectomized Minipigs as Measured by Three‐Dimensional Microcomputed Tomography , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[79]  Ewald Moser,et al.  Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis. , 2005, Neurosurgery clinics of North America.

[80]  A. Borthakur,et al.  Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. , 2000, Journal of magnetic resonance.

[81]  W. Lin,et al.  MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. , 1999, AJNR. American journal of neuroradiology.

[82]  S Nioka,et al.  Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Ewald Moser,et al.  Multiple serial picture presentation with millisecond resolution using a three-way LC-shutter-tachistoscope , 2010, Journal of Neuroscience Methods.

[84]  Juergen Hennig,et al.  Contrast behavior and relaxation effects of conventional and hyperecho‐turbo spin echo sequences at 1.5 and 3 T , 2006, Magnetic resonance in medicine.

[85]  M. Kleerekoper,et al.  The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures , 1985, Calcified Tissue International.

[86]  K Ugurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at 7 T , 2001, Magnetic resonance in medicine.

[87]  A. Doerfler,et al.  In vivo quantification of intracerebral GABA by single-voxel (1)H-MRS-How reproducible are the results? , 2010, European journal of radiology.

[88]  Thomas M. Link,et al.  MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens , 2007, European Radiology.

[89]  Sharmila Majumdar,et al.  In vivo ultra‐high‐field magnetic resonance imaging of trabecular bone microarchitecture at 7 T , 2008, Journal of magnetic resonance imaging : JMRI.

[90]  E E de Lange,et al.  Magnetization prepared rapid gradient-echo (MP-RAGE) MR imaging of the liver: comparison with spin-echo imaging. , 1991, Magnetic resonance imaging.

[91]  Thomas M. Link,et al.  Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint , 2009, Skeletal Radiology.

[92]  K. T. Scott,et al.  Protocol issues for delayed Gd(DTPA)2–‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage , 2001, Magnetic resonance in medicine.

[93]  J R Reichenbach,et al.  High-Resolution MR Venography at 3.0 Tesla , 2000, Journal of computer assisted tomography.

[94]  E. Moser,et al.  Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig , 2005, Magnetic Resonance Materials in Physics, Biology and Medicine.

[95]  James C. Lin,et al.  SAR and temperature: Simulations and comparison to regulatory limits for MRI , 2007, Journal of magnetic resonance imaging : JMRI.

[96]  R. Schneiderman,et al.  Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. , 1989, Connective tissue research.

[97]  Dietrich Haubenberger,et al.  A population‐specific symmetric phase model to automatically analyze susceptibility‐weighted imaging (SWI) phase shifts and phase symmetry in the human brain , 2010, Journal of magnetic resonance imaging : JMRI.

[98]  F Schick,et al.  Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: Two lipid compartments in muscle tissue , 1993, Magnetic resonance in medicine.

[99]  S. Debener,et al.  Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[100]  L R Schad,et al.  Improved target volume characterization in stereotactic treatment planning of brain lesions by using high‐resolution BOLD MR‐venography , 2001, NMR in biomedicine.

[101]  Jörg Stadler,et al.  MR imaging of the human hand and wrist at 7 T , 2009, Skeletal Radiology.

[102]  K. Uğurbil,et al.  Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. , 1998, Journal of magnetic resonance.

[103]  Ewald Moser,et al.  DYNAMIC 31P MRS OF EXERCISING HUMAN MUSCLE IN A 7T WHOLE BODY SYSTEM, WITH STEAM AND SEMI-LASER LOCALISATION , 2009 .

[104]  K. Uğurbil,et al.  Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz , 2004, Journal of magnetic resonance imaging : JMRI.

[105]  Vivek K. Goyal,et al.  Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design , 2008, IEEE Transactions on Medical Imaging.

[106]  Peter Nowotny,et al.  Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. , 2002, Diabetes.

[107]  D L Rothman,et al.  The Journal of Clinical Endocrinology & Metabolism Printed in U.S.A. Copyright © 2000 by The Endocrine Society Intramuscular Glycogen and Intramyocellular Lipid Utilization during Prolonged Exercise and Recovery in Man: A 13 C and 1 H Nuclear Magnetic Res , 1999 .

[108]  G. Chang,et al.  Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography , 2009, Osteoporosis International.

[109]  T. Paus Functional anatomy of arousal and attention systems in the human brain. , 2000, Progress in brain research.

[110]  Rupert Lanzenberger,et al.  Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies , 2009, NeuroImage.

[111]  Felix Eckstein,et al.  Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. , 2005, Arthritis and rheumatism.

[112]  G. O'Brien,et al.  The disunity of consciousness , 1998 .

[113]  F Barkhof,et al.  MR venography of multiple sclerosis. , 2000, AJNR. American journal of neuroradiology.

[114]  Johnpauly A k-Space Analysis of Small-Tip-Angle Excitation , 2012 .

[115]  S Maderwald,et al.  MRI of the Knee at 7.0 Tesla , 2007, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[116]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[117]  R. Fields,et al.  New insights into neuron-glia communication. , 2002, Science.

[118]  A. Villringer,et al.  Simultaneous EEG–fMRI , 2006, Neuroscience & Biobehavioral Reviews.

[119]  D. Burstein,et al.  Determination of fixed charge density in cartilage using nuclear magnetic resonance , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[120]  J. Duyn,et al.  Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data , 2009, Magnetic resonance in medicine.

[121]  G. Wary,et al.  Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy , 1997, NMR in biomedicine.

[122]  Ewald Moser,et al.  Relaxation times of 31P‐metabolites in human calf muscle at 3 T , 2003, Magnetic resonance in medicine.

[123]  Marco Martins Amatuzzi,et al.  Cartilagem Articular e Osteoartrose , 2000 .

[124]  Vinod Menon,et al.  Reduced basal forebrain and hippocampal activation during memory encoding in girls with fragile X syndrome , 2004, Neuroreport.

[125]  C. Windischberger,et al.  Evidence for Premotor Cortex Activity during Dynamic Visuospatial Imagery from Single-Trial Functional Magnetic Resonance Imaging and Event-Related Slow Cortical Potentials , 2001, NeuroImage.

[126]  J. B. Kneeland,et al.  Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. , 2000, Osteoarthritis and cartilage.

[127]  P A Bottomley,et al.  RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. , 1978, Physics in medicine and biology.

[128]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[129]  E Moser,et al.  Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. , 2008, European journal of radiology.

[130]  Christopher Nimsky,et al.  Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. , 2006, Radiology.

[131]  Roberto Bellotti,et al.  Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease. , 2009, Medical physics.

[132]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .