Germanium under high tensile stress: nonlinear dependence of direct band gap vs. strain
暂无分享,去创建一个
V. Reboud | J. Widiez | A. Chelnokov | I. Duchemin | A. Gassenq | K. Guilloy | S. Tardif | N. Pauc | G. O. Dias | R. Geiger | H. Sigg | J. Faist | J. Hartmann | J. Escalante | J. Widiez | Y. Niquet | I. Duchemin | D. Rouchon | S. Tardif | A. Chelnokov | T. Zabel | R. Geiger | K. Guilloy | A. Gassenq | N. Pauc | V. Reboud | V. Calvo | H. Sigg | J. Faist | D. Rouchon | J. M. Hartmann | T. Zabel | V. Calvo | Y. M. Niquet | G. Osvaldo Dias | J. M. Escalante
[1] G. O. Dias,et al. Lattice strain and tilt mapping in stressed Ge microstructures using X-ray Laue micro-diffraction and rainbow-filtering , 2016, 1603.06370.
[2] Yoshihiro Hamakawa,et al. Interband Electro-Optical Properties of Germanium. II. Electroreflectance , 1968 .
[3] Isabelle Sagnes,et al. Direct Band Gap Germanium Microdisks Obtained with Silicon Nitride Stressor Layers , 2016 .
[4] Yasuhiko Ishikawa,et al. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .
[5] M. Chandrasekhar,et al. Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs , 1977 .
[6] A. Ghosh. Electroreflectance Spectra and Band Structure of Germanium , 1968 .
[7] S. Froyen,et al. Pressure coefficients of band gaps in semiconductors , 1984 .
[8] David A. B. Miller,et al. A micromachining-based technology for enhancing germanium light emission via tensile strain , 2012, Nature Photonics.
[9] G. Capellini,et al. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. , 2014, Optics express.
[10] Fred H. Pollak,et al. Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .
[11] Rodriguezalegria Co,et al. First-principles determination of the sublinear dependence of the direct &) on hydrostatic pressure. , 1986 .
[12] Van de Walle Cg. Band lineups and deformation potentials in the model-solid theory. , 1989 .
[13] V. Reboud,et al. Accurate strain measurements in highly strained Ge microbridges , 2016, 1604.04391.
[14] Isabelle Sagnes,et al. Tensile-strained germanium microdisks , 2013 .
[15] Jérôme Faist,et al. Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.
[16] V. Reboud,et al. Non-linear model of electronic band structure to highly tensile-strained Germanium , 2015, 2015 IEEE 12th International Conference on Group IV Photonics (GFP).
[17] G. Strasser,et al. Tuning the Electro-optical Properties of Germanium Nanowires by Tensile Strain , 2012, Nano letters.
[18] Ahmad Cn,et al. Electron transport and pressure coefficients associated with the L1C and Delta 1C minima of germanium. , 1986 .
[19] J. J. Hall. Large-Strain Dependence of the Acceptor Binding Energy in Germanium , 1962 .
[20] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors , 1967 .
[21] Krishna C. Saraswat,et al. Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited] , 2014 .
[22] David E. Aspnes,et al. Electro-Absorption Effects at the Band Edges of Silicon and Germanium , 1966 .
[23] Alban Gassenq,et al. Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications , 2015, Photonics West - Optoelectronic Materials and Devices.
[24] M. Cardona,et al. Effect of hydrostatic pressure on the direct absorption edge of germanium , 1977 .
[25] H. Presting,et al. Deformation Potentials of k = 0 States of Tetrahedral Semiconductors , 1984, November 1.
[26] M. Lagally,et al. Strained-germanium nanostructures for infrared photonics. , 2014, ACS nano.
[27] Jérôme Faist,et al. 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications , 2015 .
[28] M. Cardona,et al. Calculated deformation potentials in Si, Ge, and GeSi , 1990 .
[29] Van de Walle CG. Band lineups and deformation potentials in the model-solid theory. , 1989, Physical review. B, Condensed matter.
[30] Syassen,et al. Direct-band-gap absorption in germanium under pressure. , 1989, Physical review. B, Condensed matter.
[31] Shin‐Tson Wu,et al. Wiley Series in Pure and Applied Optics , 2012 .
[32] Brey,et al. Calculated optical properties of semiconductors. , 1988, Physical review. B, Condensed matter.
[33] P. Gentile,et al. Tensile strained germanium nanowires measured by photocurrent spectroscopy and X-ray microdiffraction. , 2015, Nano letters.
[34] K. Saraswat,et al. Strain-induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-tunable Band Profiles , 2022 .
[35] Grégoire Beaudoin,et al. Recent advances in germanium emission [Invited] , 2013 .
[36] W. Ludwig,et al. Electron-phonon matrix elements and deformation potentials in silicon and germanium in the quasi-ion model , 1992 .
[37] Jurgen Michel,et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.
[38] I. Sagnes,et al. Optical gain in single tensile-strained germanium photonic wire. , 2011, Optics express.
[39] I. Balslev,et al. Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium , 1966 .
[40] Y. Hamakawa,et al. Interband Electro-Optical Properties of Germanium. I. Electroabsorption , 1968 .
[41] C. Tavernier,et al. Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys , 2009, 0902.0491.
[42] Shun Lien Chuang,et al. Physics of Photonic Devices , 2009 .
[43] I. Balslev. Direct edge piezo-reflectance in Ge and GaAs , 1967 .
[44] A. M. Howatson,et al. Engineering Tables and Data , 1972 .