Development of a 60 $\mu{\rm m}$ Deep Trench and Refill Process for Manufacturing Si-Based High-Voltage Super-Junction Structures

A unique and novel, 60 μm deep trench and refill process for manufacturing Si-based Super-Junction device structures for high-voltage applications beyond 600 V is discussed on the following pages. We combine an etching-process with a DCS-HCl epitaxial growth method to achieve a homogenous refilling of the generated deep-trench structures with oppositely charged dopants. Utilizing numerical process simulations, we demonstrate the advantage of the trench and refill technological approach as compared to the more established multiple-epitaxy and implantation manufacturing method. In order to experimentally validate the homogeneity of our refilling procedure, we perform secondary electron potential contrast as well as nanoscaled scanning capacitance microscopy measurements on our fabricated micro-structures.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  J. Tihanyi,et al.  A new generation of high voltage MOSFETs breaks the limit line of silicon , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[3]  Chenming Hu A parametric study of power MOSFETs , 1979, 1979 IEEE Power Electronics Specialists Conference.

[4]  T. Fujihira,et al.  Simulated superior performances of semiconductor superjunction devices , 1998, Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98 (IEEE Cat. No.98CH36212).

[5]  F. Udrea,et al.  The Superjunction Insulated Gate Bipolar Transistor Optimization and Modeling , 2010, IEEE Transactions on Electron Devices.

[6]  Lingpeng Guan,et al.  Analyzing Super-Junction C-V to estimate charge imbalance , 2010, 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[7]  F. Udrea,et al.  Optimisation of SuperJunction Bipolar Transistor for ultra-fast switching applications , 2007, Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC's.

[8]  R. Allan,et al.  Power semiconductors , 1975, IEEE Spectrum.

[9]  M. Tack,et al.  UltiMOS: A local charge-balanced trench-based 600V super-junction device , 2011, 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs.

[10]  Li Zhang,et al.  Development of 600V-class trench filling SJ-MOSFET with SSRM analysis technology , 2009, 2009 21st International Symposium on Power Semiconductor Devices & IC's.

[11]  Sami Franssila,et al.  Introduction to Microfabrication: Franssila/Introduction to Microfabrication , 2010 .

[12]  R. Smeltzer Epitaxial Deposition of Silicon in Deep Grooves , 1975 .

[13]  S. Franssila Introduction to microfabrication , 2004 .

[14]  Kin P. Cheung,et al.  Plasma Charging Damage , 2000 .

[15]  W. Saito,et al.  High breakdown voltage (>1000 V) semi-superjunction MOSFETs using 600-V class superjunction MOSFET process , 2005, IEEE Transactions on Electron Devices.

[16]  Gerhard Wachutka,et al.  Increasing the breakdown capability of superjunction power MOSFETs at the edge of the active region , 2009, 2009 13th European Conference on Power Electronics and Applications.

[17]  T. Fujihira Theory of Semiconductor Superjunction Devices , 1997 .

[18]  K. Takahashi,et al.  Above 500V class Superjunction MOSFETs fabricated by deep trench etching and epitaxial growth , 2005, Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005..

[19]  G. Deboy,et al.  A novel trench concept for the fabrication of compensation devices , 2003, ISPSD '03. 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003. Proceedings..

[20]  Holger Goebel,et al.  Intermittent-contact scanning capacitance microscopy versus contact mode SCM applied to 2D dopant profiling , 2008, Microelectron. Reliab..

[21]  F. Udrea,et al.  SuperJunction IGBTS: An evolutionary step of silicon power devices with high impact potential , 2012, CAS 2012 (International Semiconductor Conference).

[22]  J. Kopanski,et al.  Intermittent-contact scanning capacitance microscope for lithographic overlay measurement , 1998 .

[23]  S. Hine,et al.  Experimental results and simulation analysis of 250 V super trench power MOSFET (STM) , 2000, 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094).

[24]  R. Oliver Advances in AFM for the electrical characterization of semiconductors , 2008 .

[25]  Wang Fei,et al.  Above 700 V superjunction MOSFETs fabricated by deep trench etching and epitaxial growth , 2010 .

[26]  Correction to "Optimization of the specific on-resistance of the COOLMOS/sup TM/" , 2001 .

[27]  Jaegil Lee,et al.  A simulation study on novel field stop IGBTs using superjunction , 2006 .

[28]  Marina Antoniou,et al.  The Semi-Superjunction IGBT , 2010, IEEE Electron Device Letters.

[29]  H. Yamaguchi,et al.  600V-class Super Junction MOSFET with High Aspect Ratio P/N Columns Structure , 2008, 2008 20th International Symposium on Power Semiconductor Devices and IC's.

[30]  M Antoniou,et al.  The Soft $\hbox{Punchthrough}+$ Superjunction Insulated Gate Bipolar Transistor: A High Speed Structure With Enhanced Electron Injection , 2011, IEEE Transactions on Electron Devices.

[31]  G. Dolny,et al.  High-voltage semiconductor devices: status and trends , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[32]  T. Henson,et al.  Low voltage super junction MOSFET simulation and experimentation , 2003, ISPSD '03. 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003. Proceedings..

[33]  Tatsuhiko Fujihira Drift regions in semiconductor devices , 1997 .

[34]  Dongping Liu,et al.  A review of advanced scanning probe microscope analysis of functional films and semiconductor devices , 2009 .