On rational bounds for the gamma function

AbstractIn the article, we prove that the double inequality x2+p0x+p0<Γ(x+1)<x2+9/5x+9/5$$ \frac{x^{2}+p_{0}}{x+p_{0}}< \Gamma(x+1)< \frac{x^{2}+9/5}{x+9/5} $$ holds for all x∈(0,1)$x\in(0, 1)$, we present the best possible constants λ and μ such that λ(x2+9/5)x+9/5≤Γ(x+1)≤μ(x2+p0)x+p0$$ \frac{\lambda(x^{2}+9/5)}{x+9/5}\leq\Gamma(x+1)\leq\frac{\mu (x^{2}+p_{0})}{x+p_{0}} $$ for all x∈(0,1)$x\in(0, 1)$, and we find the value of x∗$x^{\ast}$ in the interval (0,1)$(0, 1)$ such that Γ(x+1)>(x2+1/γ)/(x+1/γ)$\Gamma(x+1)>(x^{2}+1/\gamma)/(x+1/\gamma)$ for x∈(0,x∗)$x\in(0, x^{\ast})$ and Γ(x+1)<(x2+1/γ)/(x+1/γ)$\Gamma(x+1)<(x^{2}+1/\gamma)/(x+1/\gamma )$ for x∈(x∗,1)$x\in(x^{\ast}, 1)$, where Γ(x)$\Gamma(x)$ is the classical gamma function, γ=limn→∞(∑k=1n1/k−logn)=0.577…$\gamma=\lim_{n\rightarrow\infty}(\sum_{k=1}^{n}1/k-\log n)=0.577\ldots$ is Euler-Mascheroni constant and p0=γ/(1−γ)=1.365…$p_{0}=\gamma/(1-\gamma )=1.365\ldots$ .

[1]  J. Selliah An Inequality Satisfied by the Gamma Function , 1976, Canadian Mathematical Bulletin.

[2]  Y. Chu,et al.  Monotonic and Logarithmically Convex Properties of a Function Involving Gamma Functions , 2009 .

[3]  Yu-Ming Chu,et al.  Inequalities and infinite product formula for Ramanujan generalized modular equation function , 2018 .

[4]  G. Anderson,et al.  Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .

[5]  Necdet Batir,et al.  Some Gamma Function Inequalities , 2006 .

[6]  Xiaohui Zhang,et al.  Sharp bounds for psi function , 2015, Appl. Math. Comput..

[7]  Josip Pečarić,et al.  The best bounds in Gautschi's inequality , 2000 .

[8]  W. Gautschi Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .

[9]  D. Kershaw Some extensions of W. Gautschi’s inequalities for the gamma function , 1983 .

[10]  Hal L. Smith,et al.  A monotonicity property of the gamma function , 1997 .

[11]  Feng Qi (祁锋) Bounds for the Ratio of Two Gamma Functions , 2009 .

[12]  H. Alzer ON A GAMMA FUNCTION INEQUALITY OF GAUTSCHI , 2002, Proceedings of the Edinburgh Mathematical Society.

[13]  Yu-Ming Chu,et al.  Logarithmically Complete Monotonicity Properties Relating to the Gamma Function , 2011 .

[14]  Yu-Ming Chu,et al.  A Double Inequality for the Trigamma Function and Its Applications , 2014 .

[15]  Zhen-Hang Yang,et al.  Monotonicity properties of a function involving the psi function with applications , 2015 .

[16]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[17]  Y. Chu,et al.  Refinements of transformation inequalities for zero-balanced hypergeometric functions , 2017 .

[18]  A note on a gamma function inequality , 2009 .

[19]  Y. Chu,et al.  A Class of Logarithmically Completely Monotonic Functions Associated with a Gamma Function , 2010 .

[20]  J. Gurland An inequality satisfied by the Gamma function , 1956 .

[21]  Feng Qi (祁锋),et al.  A refinement of a double inequality for the gamma function , 2010, Publicationes Mathematicae Debrecen.

[22]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[23]  Xiaoming Zhang,et al.  A Double Inequality for Gamma Function , 2009 .