A Distributed RF Front-End for UWB Receivers

This paper presents the design and fabrication of a novel silicon-based distributed RF front-end for ultra wideband (UWB) receivers (RX). The proposed UWB distributed RF front-end, called UWB-DRF, is suitable for UWB IF transceiver architectures. The circuit constitutes of combined low-noise amplifier (LNA) and down-conversion mixer cells distributed along the artificial transmission lines (TLs), to achieve wideband conversion gain, noise figure (NF), and linearity. A 3 stage UWB-DRF was fabricated in a 0.13 mum CMOS process. The prototype UWB-DRF achieves 13.8-15.5 dB gain over the entire UWB frequency range, while exhibiting flat NF of 5.2 dB across the band. The radio-frequency (RF), local-oscillator (LO), and intermediate-frequency (IF) ports are wideband-matched to 50Q. A programmable RF termination allows the UWB-DRF to achieve higher gain of 17.7 dB and lower NF of 3.5 dB, while trading off with few decibels of mismatch at the RF input port

[1]  B. Razavi,et al.  A UWB CMOS transceiver , 2005, IEEE Journal of Solid-State Circuits.

[2]  V. Srinivasa Somayazulu,et al.  Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity , 2004, Proceedings of the IEEE.

[3]  Robert G. Meyer,et al.  Noise in current-commutating CMOS mixers , 1999, IEEE J. Solid State Circuits.

[4]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005, IEEE Journal of Solid-State Circuits.

[5]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[6]  Payam Heydari,et al.  A performance optimized CMOS distributed LNA for UWB receivers , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[7]  Ahmad Yazdi,et al.  Design and analysis of an ultrawide-band distributed CMOS mixer , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[9]  P. Kinget,et al.  Low power programmable-gain CMOS distributed LNA for ultra-wideband applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[10]  F.S. Lee,et al.  An ultra-wideband baseband front-end , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[11]  A.A. Abidi,et al.  A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-/spl mu/m SiGe BiCMOS for mode-2 MB-OFDM UWB communication , 2005, IEEE Journal of Solid-State Circuits.

[12]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[13]  Asad A. Abidi,et al.  A merged CMOS LNA and mixer for a WCDMA receiver , 2003 .

[14]  T.S. Kalkur,et al.  High-speed current-mode logic amplifier using positive feedback and feed-forward source-follower techniques for high-speed CMOS I/O buffer , 2005, IEEE Journal of Solid-State Circuits.

[15]  J.D. Cressler,et al.  A 3-10 GHz SiGe resistive feedback low noise amplifier for UWB applications , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[16]  A.A. Abidi,et al.  A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network , 2004, IEEE Journal of Solid-State Circuits.