Regression with Missing X's: A Review

Regression With Missing X's: A Review Author(s): Roderick J. A. Little Source: Journal of the American Statistical Association, Vol. 87, No. 420 (Dec., 1992), pp. 1227- Published by: American Statistical Association Stable URL: http://www.jstor.org/stable/2290664 . Accessed: 09/08/2011 18:31 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association. http://www.jstor.org

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  Kirby L. Jackson,et al.  Log-linear analysis of censored survival data with partially observed covariates , 1989 .

[3]  Allan Donner,et al.  Missing value problems in multiple linear regression with two independent variables , 1982 .

[4]  Donald B. Rubin,et al.  Comment : A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest : The SIR Algorithm , 1987 .

[5]  Irwin Guttman,et al.  Bayesian Inference in Multivariate Regression with Missing Observations on the Response Variables , 1983 .

[6]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[7]  R. Little,et al.  Maximum likelihood estimation for mixed continuous and categorical data with missing values , 1985 .

[8]  N Schenker,et al.  Multiple imputation for threshold-crossing data with interval censoring. , 1993, Statistics in medicine.

[9]  Donald B. Rubin,et al.  Comparing Regressions When Some Predictor Values Are Missing , 1976 .

[10]  Y. Haitovsky Missing Data in Regression Analysis , 1968 .

[11]  Roderick J. A. Little,et al.  Approximately calibrated small sample inference about means from bivariate normal data with missing values , 1988 .

[12]  Alexander Basilevsky,et al.  Chapter 12 – Missing Data: A Review of the Literature , 1983 .

[13]  M Van Guilder,et al.  Estimation of parameters and missing values under a regression model with non-normally distributed and non-randomly incomplete data. , 1989, Statistics in medicine.

[14]  Robert M. Elashoff,et al.  Missing Observations in Multivariate Statistics II. Point Estimation in Simple Linear Regression , 1967 .

[15]  T. Amemiya Tobit models: A survey , 1984 .

[16]  Donald B. Rubin,et al.  Characterizing the Estimation of Parameters in Incomplete-Data Problems , 1974 .

[17]  T. Dijkstra,et al.  Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem , 1985 .

[18]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[19]  D. Rubin Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys , 1977 .

[20]  Abdelmonem A. Afifi,et al.  Missing Observations in Multivariate Statistics—IV: A Note on Simple Linear Regression , 1969 .

[21]  W. P. Dixon,et al.  BMPD statistical software manual , 1988 .

[22]  R. R. Hocking,et al.  Optimum Incomplete Multinormal Samples , 1972 .

[23]  R. Elashoff,et al.  Missing Observations in Multivariate Statistics I. Review of the Literature , 1966 .

[24]  R. R. Hocking,et al.  The analysis of incomplete data. , 1971 .

[25]  Abdelmonem A. Afifi,et al.  Missing Observations in Multivariate Statistics III: Large Sample Analysis of Simple Linear Regression , 1969 .

[26]  D. Rubin,et al.  Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse , 1986 .

[27]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[28]  Ingram Olkin,et al.  Multivariate Correlation Models with Mixed Discrete and Continuous Variables , 1961 .

[29]  E. Beale,et al.  Missing Values in Multivariate Analysis , 1975 .

[30]  H. Hartley Maximum Likelihood Estimation from Incomplete Data , 1958 .

[31]  C H Brown,et al.  Protecting against nonrandomly missing data in longitudinal studies. , 1990, Biometrics.

[32]  R. Little,et al.  Maximum likelihood inference for multiple regression with missing values , 1979 .

[33]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[34]  Roderick J. A. Little,et al.  The Analysis of Social Science Data with Missing Values , 1989 .

[35]  S. Weisberg,et al.  Assessing influence in multiple linear regression with incomplete data , 1986 .

[36]  R. Little Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .

[37]  Thomas R. Fleming,et al.  A Nonparametric Method for Dealing with Mismeasured Covariate Data , 1991 .

[38]  Donald B. Rubin,et al.  Algorithms for multiple imputation and posterior simulation from incomplete multivariate data with ignorable nonresponse , 1992 .

[39]  Alain Monfort,et al.  On the Problem of Missing Data in Linear Models , 1981 .

[40]  George L. Edgett Multiple Regression with Missing Observations Among the Independent Variables , 1956 .

[41]  J. Ibrahim Incomplete Data in Generalized Linear Models , 1990 .

[42]  M. Woodbury A missing information principle: theory and applications , 1972 .

[43]  Alastair Scott,et al.  Missing Variables in Bayesian Regression II. , 1976 .

[44]  M. Glasser,et al.  Linear Regression Analysis with Missing Observations among the Independent Variables , 1964 .

[45]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[46]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[47]  Xiao-Li Meng,et al.  Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .

[48]  S. S. Wilks Moments and Distributions of Estimates of Population Parameters from Fragmentary Samples , 1932 .

[49]  D. Conniffe,et al.  Comments on the Weighted Regression Approach to Missing Values , 1983 .

[50]  C. Radhakrishna Rao,et al.  Analysis of Dispersion with Incomplete Observations on One of the Characters , 1956 .

[51]  Jae-On Kim,et al.  The Treatment of Missing Data in Multivariate Analysis , 1977 .

[52]  Roderick J. A. Little,et al.  Multiple Imputation for the Fatal Accident Reporting System , 1991 .

[53]  Marcel G. Dagenais,et al.  The use of incomplete observations in multiple regression analysis: A generalized least squares approach , 1973 .

[54]  Jeffrey S. Simonoff,et al.  Diagnostic Plots for Missing Data in Least Squares Regression , 1986 .

[55]  R. Carter Hill,et al.  Missing regressor values under conditions of multicollinearity , 1983 .

[56]  Theo Nijman,et al.  Efficiency gains due to using missing data procedures in regression models , 1988 .

[57]  Michael L. Stein,et al.  Minimum norm quadratic estimation of spatial variograms , 1987 .

[58]  D. Rubin,et al.  On Jointly Estimating Parameters and Missing Data by Maximizing the Complete-Data Likelihood , 1983 .

[59]  S. F. Buck A Method of Estimation of Missing Values in Multivariate Data Suitable for Use with an Electronic Computer , 1960 .

[60]  F. Yates The analysis of replicated experiments when the field results are incomplete , 1933 .

[61]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[62]  Frederic M. Lord,et al.  Estimation of Parameters from Incomplete Data , 1954 .

[63]  R. Bargmann,et al.  MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE DATA , 1964 .

[64]  George E. Nicholson,et al.  Estimation of Parameters from Incomplete Multivariate Samples , 1957 .

[65]  Neil H. Timm,et al.  The estimation of variance-covariance and correlation matrices from incomplete data , 1970 .

[66]  Bengt Muthén,et al.  On structural equation modeling with data that are not missing completely at random , 1987 .

[67]  Jeffrey S. Simonoff Regression diagnostics to detect nonrandom missingness in linear regression , 1988 .

[68]  J. S. Mehta,et al.  On Bayesian estimation of seemingly unrelated regressions when some observations are missing , 1975 .

[69]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[70]  Denis Conniffe Small-Sample Properties of Estimators of Regression Coefficients Given a Common Pattern of Missing Data , 1983 .