Exploiting Parallelization in Spatial Statistics: An Applied Survey Using R

Computing tasks may be parallelized top-down by splitting into per-node chunks when the tasks permit this kind of division, and particularly when there is little or no need for communication between the nodes. Another approach is to parallelize bottom-up, by the substitution of multi-threaded low-level functions for single-threaded ones in otherwise unchanged user-level functions. This survey examines the timings of typical spatial data analysis tasks across a range of data sizes and hardware under different combinations of these two approaches. Conclusions are drawn concerning choices of alternatives for parallelization, and attention is drawn to factors conditioning those choices.

[1]  Michael Tiefelsdorf,et al.  The Saddlepoint Approximation of Moran's I's and Local Moran's I i's Reference Distributions and Their Numerical Evaluation , 2002 .

[2]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.

[3]  Robert A. van de Geijn,et al.  Anatomy of high-performance matrix multiplication , 2008, TOMS.

[4]  S. Fotheringham,et al.  Geographically weighted regression : modelling spatial non-stationarity , 1998 .

[5]  Hao Yu,et al.  State of the Art in Parallel Computing with R , 2009 .

[6]  Luke Tierney Code analysis and parallelizing vector operations in R , 2009, Comput. Stat..

[7]  J. LeSage Introduction to spatial econometrics , 2009 .

[8]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[9]  Antoine Petitet,et al.  Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005 .

[10]  P. Diggle Applied Spatial Statistics for Public Health Data , 2005 .

[11]  A. J. Rossini,et al.  On the Edge: Statistics & Computing , 2003 .

[12]  John Fox,et al.  Aspects of the Social Organization and Trajectory of the R Project , 2009, R J..

[13]  Paul A. Longley,et al.  Grid‐enabling Geographically Weighted Regression: A Case Study of Participation in Higher Education in England , 2010, Trans. GIS.

[14]  Roger Bivand,et al.  Power calculations for global and local Moran's I , 2009, Comput. Stat. Data Anal..

[15]  Chi-Bang Kuan,et al.  Automated Empirical Optimization , 2011, Encyclopedia of Parallel Computing.

[16]  J. Paul Elhorst,et al.  Applied Spatial Econometrics: Raising the Bar , 2010 .

[17]  Na Li,et al.  Snow: A Parallel Computing Framework for the R System , 2009, International Journal of Parallel Programming.

[18]  Catherine A. Calder,et al.  Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model , 2007 .

[19]  Guido Schwarzer,et al.  Easier parallel computing in R with snowfall and sfCluster , 2009, R J..

[20]  Rob Harrop,et al.  Installation and Administration , 2004 .

[21]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[22]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[23]  Na Li,et al.  Simple Parallel Statistical Computing in R , 2007 .

[24]  Robert A. van de Geijn,et al.  High-performance implementation of the level-3 BLAS , 2008, TOMS.

[25]  Daniel A. Griffith,et al.  Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach , 2007 .

[26]  Chris Brunsdon,et al.  Geographically Weighted Regression: The Analysis of Spatially Varying Relationships , 2002 .

[27]  Sergio J. Rey,et al.  Show me the code: spatial analysis and open source , 2009, J. Geogr. Syst..