Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices

Periodically textured metallic films are discussed as a method of extracting light from thin-film emissive devices. The proposed scheme involves coupling the emitters to a surface plasmon polariton mode of the structure and producing useful radiation by scattering this mode off periodic microstructure. The concepts involved are developed and the details associated with several specific candidate structures explored. The potential of these structures to enhance the emissive process is assessed, and possible problems, especially loss in the metal, are discussed.

[1]  W. Barnes,et al.  Spontaneous emission within metal-clad microcavities , 1999 .

[2]  William L. Barnes,et al.  Photonic surfaces for surface-plasmon polaritons , 1997 .

[3]  Julia M. Phillips,et al.  Physics and applications of organic microcavity light emitting diodes , 1996 .

[4]  H. Rigneault,et al.  Extraction of light from sources located inside waveguide grating structures. , 1999, Optics Letters.

[5]  William L. Barnes,et al.  Photoluminescence from dye molecules on silver gratings , 1996 .

[6]  Claude Amra,et al.  Electromagnetic power provided by sources within multilayer optics: free-space and modal patterns , 1997 .

[7]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[8]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[9]  Kenichi Iga,et al.  Theoretical and Experimental Estimations of Photon Recycling Effect in Light Emitting Devices with a Metal Mirror , 1996 .

[10]  Lukas Novotny,et al.  Allowed and forbidden light in near-field optics. I. A single dipolar light source , 1997 .

[11]  B. Persson,et al.  Excited states at metal surfaces and their non-radiative relaxation , 1984 .

[12]  Gustaaf Borghs,et al.  Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes , 1999 .

[13]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[14]  Donal D. C. Bradley,et al.  Angular Dependence of the Emission from a Conjugated Polymer Light‐Emitting Diode: Implications for efficiency calculations , 1994 .

[15]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[16]  J. R. Sambles,et al.  Scattering-matrix approach to multilayer diffraction , 1995 .

[17]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[18]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[19]  W. Barnes,et al.  Photonic band gaps in metallic microcavities , 1998 .

[20]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling , 1998 .

[21]  C. Weisbuch,et al.  OPTICAL MICROCAVITIES IN CONDENSED MATTER SYSTEMS , 1994 .

[22]  M. Tomaš,et al.  Enhanced molecular fluorescence mediated by long-range surface polaritons , 1989 .

[23]  Erich P. Ippen,et al.  Spontaneous emission rate alteration in optical waveguide structures , 1990 .

[24]  J. Sipe The dipole antenna problem in surface physics: A new approach , 1981 .

[25]  Jacobson,et al.  Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity. , 1993, Physical review letters.

[26]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[27]  Holland,et al.  Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film. , 1986, Physical review letters.

[28]  William L. Barnes,et al.  Spontaneous emission and metal-clad microcavities , 1999 .

[29]  Rigneault,et al.  Modal analysis of spontaneous emission in a planar microcavity. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[31]  J. R. Sambles,et al.  Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings , 1999 .

[32]  F. J. Garcia-Vidal,et al.  SURFACE SHAPE RESONANCES IN LAMELLAR METALLIC GRATINGS , 1998 .

[33]  W. Barnes,et al.  Effect of Lateral Micro structure on Conjugated Polymer Luminescence , 1999 .

[34]  W. Barnes,et al.  Modification of the spontaneous emission rate of Eu 3 + ions embedded within a dielectric layer above a silver mirror , 1999 .

[35]  Paul K. Hansma,et al.  Efficiency of light emission from surface plasmons , 1982 .

[36]  Machida,et al.  Modification of spontaneous emission rate in planar dielectric microcavity structures. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[38]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[39]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[40]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[41]  J. Sambles,et al.  Coupled Surface Plasmons in a Symmetric System , 1988 .