Tight Complexity Bounds for Reasoning in the Description Logic BEL

Recently, Bayesian extensions of Description Logics, and in particular the logic BEL, were introduced as a means of representing certain knowledge that depends on an uncertain context. In this paper we introduce a novel structure, called proof structure, that encodes the contextual information required to deduce subsumption relations from a BEL knowledge base. Using this structure, we show that probabilistic reasoning in BEL can be reduced in polynomial time to standard Bayesian network inferences, thus obtaining tight complexity bounds for reasoning in BEL.

[1]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[2]  Szymon Klarman,et al.  ALCALC: A Context Description Logic , 2010, JELIA.

[3]  Rafael Peñaloza,et al.  Pinpointing in the Description Logic EL , 2007, Description Logics.

[4]  Rafael Peñaloza,et al.  Probabilistic Query Answering in the Bayesian Description Logic BEL , 2015, SUM.

[5]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[6]  Heiner Stuckenschmidt,et al.  Log-Linear Description Logics , 2011, IJCAI.

[7]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[8]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[9]  Evelina Lamma,et al.  Epistemic and Statistical Probabilistic Ontologies , 2012, URSW.

[10]  Christoph Weidenbach,et al.  Automated Reasoning , 2014, Lecture Notes in Computer Science.

[11]  Sebastian Brandt,et al.  Polynomial Time Reasoning in a Description Logic with Existential Restrictions, GCI Axioms, and - What Else? , 2004, ECAI.

[12]  Paulo Cesar G. da Costa,et al.  PR-OWL: A Bayesian Ontology Language for the Semantic Web , 2005, ISWC-URSW.

[13]  Alon Y. Halevy,et al.  P-CLASSIC: A Tractable Probablistic Description Logic , 1997, AAAI/IAAI.

[14]  Rafael Peñaloza,et al.  Bayesian Description Logics , 2014, Description Logics.

[15]  Thomas Lukasiewicz,et al.  Tractable Reasoning with Bayesian Description Logics , 2008, SUM.

[16]  Carsten Lutz,et al.  Probabilistic Description Logics for Subjective Uncertainty , 2010, KR.

[17]  Dede Efendi,et al.  Context-Sensitive Bayesian Description Logics by İsmail İlkan Ceylan in partial fulfilment of the requirements for the degree of Master of Science in International Center for Computational Logic Faculty of Computer Science , 2013 .

[18]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[19]  Ian Horrocks,et al.  Consequence-Based Reasoning beyond Horn Ontologies , 2011, IJCAI.

[20]  Heping Pan,et al.  Inference Algorithms in Bayesian Networks and the Probanet System , 1998, Digit. Signal Process..

[21]  Rafael Peñaloza,et al.  Automata-Based Axiom Pinpointing , 2010, Journal of Automated Reasoning.

[22]  Luciano Serafini,et al.  Contextualized knowledge repositories for the Semantic Web , 2012, J. Web Semant..

[23]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[24]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[25]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..