Spectroscopic analysis with tender X-rays: SpAnTeX, a new AP-HAXPES end-station at BESSY II

[1]  F. Johansson,et al.  Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020 , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Fredrik J. Lindgren,et al.  HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory , 2021, Journal of synchrotron radiation.

[3]  M. Hävecker,et al.  A comparative study of electrochemical cells for in situ x-ray spectroscopies in the soft and tender x-ray range , 2020 .

[4]  M. Favaro Stochastic Analysis of Electron Transfer and Mass Transport in Confined Solid/Liquid Interfaces , 2020, Surfaces.

[5]  J. V. van Bokhoven,et al.  Probing the solid-liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. , 2020, The Review of scientific instruments.

[6]  Beomgyun Jeong,et al.  AP-XPS beamline, a platform for operando science at Pohang Accelerator Laboratory , 2020, Journal of synchrotron radiation.

[7]  B. Mun,et al.  Performance Test of a Laboratory-Based Ambient Pressure X-ray Photoelectron Spectroscopy System at the Gwangju Institute of Science and Technology , 2019, Journal of the Korean Physical Society.

[8]  Zhi Liu,et al.  An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF , 2019, Nuclear Science and Techniques.

[9]  Jie-Jin Cai,et al.  Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors , 2019, Nuclear Science and Techniques.

[10]  F. Abdi,et al.  Interface Science Using Ambient Pressure Hard X-ray Photoelectron Spectroscopy , 2019, Surfaces.

[11]  Yaw-Wen Yang,et al.  New ambient pressure X-ray photoelectron spectroscopy endstation at Taiwan light source , 2019 .

[12]  W. H. Doh,et al.  Reversible Oxygen‐Driven Nickel Oxide Structural Transition on the Nickel(1 1 1) Surface at Near‐Ambient Pressure , 2018 .

[13]  F. Tao,et al.  Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase. , 2018, Physical chemistry chemical physics : PCCP.

[14]  T. Yokoyama,et al.  Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions. , 2018, Accounts of chemical research.

[15]  Kanak Roy,et al.  Ambient Pressure Photoelectron Spectroscopy: Opportunities in Catalysis from Solids to Liquids and Introducing Time Resolution , 2018 .

[16]  W. Chueh,et al.  Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting. , 2017, The journal of physical chemistry letters.

[17]  F. Abdi,et al.  Combined soft and hard X-ray ambient pressure photoelectron spectroscopy studies of semiconductor/electrolyte interfaces , 2017 .

[18]  F. Toma,et al.  Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. , 2017, Journal of the American Chemical Society.

[19]  A. Ouerghi,et al.  Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells. , 2017, Nano letters.

[20]  F. Toma,et al.  Elucidating the alkaline oxygen evolution reaction mechanism on platinum , 2017 .

[21]  R. Schlögl,et al.  In situ X-ray photoelectron spectroscopy of electrochemically active solid-gas and solid-liquid interfaces , 2017 .

[22]  A. Frenkel,et al.  New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes , 2017 .

[23]  N. Lewis,et al.  Operando Analyses of Solar Fuels Light Absorbers and Catalysts , 2016 .

[24]  Zahid Hussain,et al.  Unravelling the electrochemical double layer by direct probing of the solid/liquid interface , 2016, Nature Communications.

[25]  J. Woicik,et al.  Recent applications of hard x-ray photoelectron spectroscopy , 2016 .

[26]  J. Knudsen,et al.  A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach , 2016 .

[27]  M. Silly,et al.  Charge dynamics at heterojunctions for PbS/ZnO colloidal quantum dot solar cells probed with time-resolved surface photovoltage spectroscopy , 2016 .

[28]  J. Bokhoven,et al.  The Environmental Photochemistry of Oxide Surfaces and the Nature of Frozen Salt Solutions: A New in Situ XPS Approach , 2016, Topics in Catalysis.

[29]  H. Bluhm,et al.  Liquid/Solid Interfaces Studied by Ambient Pressure HAXPES , 2016 .

[30]  Z. Hussain,et al.  Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface , 2015, Scientific Reports.

[31]  M. Silly,et al.  Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide , 2015 .

[32]  F. Salmassi,et al.  Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission , 2014, Nature Communications.

[33]  A. Moretto,et al.  Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials , 2014 .

[34]  T. Tyliszczak,et al.  Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources. , 2014, The Review of scientific instruments.

[35]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[36]  M. Hävecker,et al.  Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. , 2013, Chemical Society reviews.

[37]  H. Ogasawara,et al.  Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry , 2013 .

[38]  Yamamoto Susumu,et al.  Time-Resolved Photoelectron Spectroscopies Using Synchrotron Radiation: Past, Present, and Future , 2013 .

[39]  V. Strocov Optimization of the X-ray incidence angle in photoelectron spectrometers , 2012, Journal of synchrotron radiation.

[40]  Y. Kousa,et al.  In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces , 2012 .

[41]  Roel van de Krol,et al.  Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes , 2012 .

[42]  A. Herrera‐Gomez,et al.  Resolving overlapping peaks in ARXPS data: The effect of noise and fitting method , 2012 .

[43]  Roel van de Krol,et al.  Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes , 2011 .

[44]  S. Urpelainen,et al.  Free atom 4f photoelectron spectra of Au, Pb, and Bi , 2011 .

[45]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[46]  Charles S. Fadley,et al.  X-ray photoelectron spectroscopy: Progress and perspectives , 2010 .

[47]  H. Bluhm Photoelectron spectroscopy of surfaces under humid conditions , 2010 .

[48]  M. Faubel,et al.  Spatial distribution of nitrate and nitrite anions at the liquid/vapor interface of aqueous solutions. , 2009, Journal of the American Chemical Society.

[49]  D. F. Ogletree,et al.  Photoelectron spectroscopy under ambient pressure and temperature conditions , 2009 .

[50]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[51]  M. Gorgoi,et al.  KMC-1: a high resolution and high flux soft x-ray beamline at BESSY. , 2007, The Review of scientific instruments.

[52]  D. F. Ogletree,et al.  The Nature of Water Nucleation Sites on TiO2(110) Surfaces Revealed by Ambient Pressure X-ray Photoelectron Spectroscopy , 2007 .

[53]  V. G. Yarzhemsky,et al.  Non-dipole second order parameters of the photoelectron angular distribution for elements Z = 1–100 in the photoelectron energy range 1–10 keV , 2006 .

[54]  D. F. Ogletree,et al.  Methanol Oxidation on a Copper Catalyst Investigated Using in Situ X-ray Photoelectron Spectroscopy† , 2004 .

[55]  D. F. Ogletree,et al.  A differentially pumped electrostatic lens system for photoemission studies in the millibar range , 2002 .

[56]  R. Follath,et al.  A plane-grating monochromator for circularly polarized undulator radiation at BESSY II. , 1998, Journal of synchrotron radiation.

[57]  J. Bahrdt,et al.  A novel undulator-based PGM beamline for circularly polarised synchrotron radiation at BESSY II , 1997 .

[58]  A. Zecca,et al.  Total cross-section measurements for e−—CO scattering: 80–4000 eV , 1993 .

[59]  S. Evans Curve synthesis and optimization procedures for X‐ray photoelectron spectroscopy , 1991 .

[60]  S. Tougaard Practical algorithm for background subtraction , 1989 .

[61]  García,et al.  Total cross section for electron scattering from N2 in the energy range 600-5000 eV. , 1988, Physical review. A, General physics.

[62]  H. Siegbahn,et al.  ESCA applied to liquids , 1973 .