Parameter regions that give rise to 2[n/2] +1 positive steady states in the n-site phosphorylation system.
暂无分享,去创建一个
Alicia Dickenstein | Rick Rischter | A. Dickenstein | Rick Rischter | M. P. Millán | M. Giaroli | Magalí Giaroli | Mercedes P Millán
[1] Elisenda Feliu,et al. The Multistationarity Structure of Networks with Intermediates and a Binomial Core Network , 2018, Bulletin of Mathematical Biology.
[2] C. Wiuf,et al. A proof of unlimited multistability for phosphorylation cycles , 2019, Nonlinearity.
[3] Alicia Dickenstein,et al. Lower bounds for positive roots and regions of multistationarity in chemical reaction networks , 2018, Journal of Algebra.
[4] Dietrich Flockerzi,et al. Multistationarity in Sequential Distributed Multisite Phosphorylation Networks , 2013, Bulletin of Mathematical Biology.
[5] E. Feliu. On the reaction rate constants that enable multistationarity in the two-site phosphorylation cycle , 2018, 1809.07275.
[6] Thomas Kahle,et al. Multistationarity in the Space of Total Concentrations for Systems that Admit a Monomial Parametrization , 2018, Bulletin of Mathematical Biology.
[7] Elisenda Feliu,et al. Simplifying biochemical models with intermediate species , 2013, Journal of The Royal Society Interface.
[8] J. Gunawardena,et al. Unlimited multistability in multisite phosphorylation systems , 2009, Nature.
[9] B. Kholodenko,et al. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.
[10] Eduardo Sontag,et al. On the number of steady states in a multiple futile cycle , 2008, Journal of mathematical biology.
[11] Francisco Santos,et al. A Polyhedral Method for Sparse Systems with Many Positive Solutions , 2018, SIAM J. Appl. Algebra Geom..
[12] Dietrich Flockerzi,et al. N-site Phosphorylation Systems with 2N-1 Steady States , 2013, Bulletin of mathematical biology.
[13] Elisenda Feliu,et al. Identifying parameter regions for multistationarity , 2016, PLoS Comput. Biol..
[14] Karin Gatermann,et al. BIOCHEMICAL REACTION NETWORKS : AN INVITATION FOR ALGEBRAIC , 2015 .
[15] Alan D. Rendall,et al. A proof of bistability for the dual futile cycle , 2014, 1404.0394.
[16] Carsten Conradi,et al. Catalytic constants enable the emergence of bistability in dual phosphorylation , 2014, Journal of The Royal Society Interface.
[17] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[18] Alicia Dickenstein,et al. Regions of multistationarity in cascades of Goldbeter–Koshland loops , 2018, Journal of Mathematical Biology.