Automated Design of Deep Neural Networks

In recent years, research in applying optimization approaches in the automatic design of deep neural networks has become increasingly popular. Although various approaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this hot research topic. In this article, we propose a unified way to describe the various optimization algorithms that focus on common and important search components of optimization algorithms: representation, objective function, constraints, initial solution(s), and variation operators. In addition to large-scale search space, the problem is characterized by its variable mixed design space, it is very expensive, and it has multiple blackbox objective functions. Hence, this unified methodology has been extended to advanced optimization approaches, such as surrogate-based, multi-objective, and parallel optimization.

[1]  Ramesh Raskar,et al.  Designing Neural Network Architectures using Reinforcement Learning , 2016, ICLR.

[2]  El-Ghazali Talbi,et al.  Bayesian optimization of variable-size design space problems , 2020, Optimization and Engineering.

[3]  Dhabaleswar K. Panda,et al.  S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters , 2017, PPoPP.

[4]  Thomas Paine,et al.  GPU Asynchronous Stochastic Gradient Descent to Speed Up Neural Network Training , 2013, ICLR.

[5]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[6]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Frank Hutter,et al.  Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution , 2018, ICLR.

[8]  Nicholas Rhinehart,et al.  N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning , 2017, ICLR.

[9]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[10]  Roger A. Pearce,et al.  Large-Scale Deep Learning on the YFCC100M Dataset , 2015, ArXiv.

[11]  Tie-Yan Liu,et al.  Neural Architecture Optimization , 2018, NeurIPS.

[12]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[13]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[14]  Nuno Lourenço,et al.  Coevolution of Generative Adversarial Networks , 2019, EvoApplications.

[15]  Cory Stephenson,et al.  A Comparison of Loss Weighting Strategies for Multi task Learning in Deep Neural Networks , 2019, IEEE Access.

[16]  Geoffrey J. Gordon,et al.  DeepArchitect: Automatically Designing and Training Deep Architectures , 2017, ArXiv.

[17]  Hisao Ishibuchi,et al.  Interactive Multiobjective Optimization: A Review of the State-of-the-Art , 2018, IEEE Access.

[18]  Julien Cornebise,et al.  Weight Uncertainty in Neural Network , 2015, ICML.

[19]  Frank Hutter,et al.  Neural Architecture Search: A Survey , 2018, J. Mach. Learn. Res..

[20]  Quoc V. Le,et al.  GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism , 2018, ArXiv.

[21]  Bin Wang,et al.  Evolving deep neural networks by multi-objective particle swarm optimization for image classification , 2019, GECCO.

[22]  Nuno Lourenço,et al.  Evolving the Topology of Large Scale Deep Neural Networks , 2018, EuroGP.

[23]  Tansel Dökeroglu,et al.  Evolutionary parallel extreme learning machines for the data classification problem , 2019, Comput. Ind. Eng..

[24]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[25]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Martin Jaggi,et al.  Evaluating the Search Phase of Neural Architecture Search , 2019, ICLR.

[27]  Mengjie Zhang,et al.  An Experimental Study on Hyper-parameter Optimization for Stacked Auto-Encoders , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[28]  Jakob Verbeek,et al.  Convolutional Neural Fabrics , 2016, NIPS.

[29]  Andrea E. Olsson Particle Swarm Optimization: Theory, Techniques and Applications , 2010 .

[30]  Li Fei-Fei,et al.  Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Dong Wang,et al.  Pruning deep neural networks by optimal brain damage , 2014, INTERSPEECH.

[32]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[33]  Frank Hutter,et al.  Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves , 2015, IJCAI.

[34]  Jonathan Gordon,et al.  Probabilistic Neural Architecture Search , 2019, ArXiv.

[35]  Lorenzo Torresani,et al.  MaskConnect: Connectivity Learning by Gradient Descent , 2018, ECCV.

[36]  Tianqi Chen,et al.  Net2Net: Accelerating Learning via Knowledge Transfer , 2015, ICLR.

[37]  Song Han,et al.  Path-Level Network Transformation for Efficient Architecture Search , 2018, ICML.

[38]  Xin Yao,et al.  Evolutionary Generative Adversarial Networks , 2018, IEEE Transactions on Evolutionary Computation.

[39]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[40]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[41]  A. J. Turner,et al.  Evolving Artificial Neural Networks using Cartesian Genetic Programming , 2015 .

[42]  Ashraf Darwish,et al.  A survey of swarm and evolutionary computing approaches for deep learning , 2019, Artificial Intelligence Review.

[43]  Xin Yao,et al.  Ensemble Learning Using Multi-Objective Evolutionary Algorithms , 2006, J. Math. Model. Algorithms.

[44]  Aaron Klein,et al.  Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.

[45]  Li Fei-Fei,et al.  Progressive Neural Architecture Search , 2017, ECCV.

[46]  Jihoon Yang,et al.  Constructive Neural-Network Learning Algorithms for Pattern Classification , 2000 .

[47]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[48]  P. Stadler Landscapes and their correlation functions , 1996 .

[49]  Masoud Daneshtalab,et al.  DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems , 2020, Microprocess. Microsystems.

[50]  Wei Wu,et al.  Practical Block-Wise Neural Network Architecture Generation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[51]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Vivienne Sze,et al.  Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Aaron Klein,et al.  NAS-Bench-101: Towards Reproducible Neural Architecture Search , 2019, ICML.

[54]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[55]  Ye-Hoon Kim,et al.  NEMO : Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed and Accuracy , 2017 .

[56]  Lukasz Kaiser,et al.  One Model To Learn Them All , 2017, ArXiv.

[57]  Ludovic Denoyer,et al.  Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[58]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[59]  Julian Togelius,et al.  Evolving Memory Cell Structures for Sequence Learning , 2009, ICANN.

[60]  Roberto Cipolla,et al.  Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Flavio Vella,et al.  Multi-objective autotuning of MobileNets across the full software/hardware stack , 2018, ReQuEST@ASPLOS.

[62]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[63]  Masanori Suganuma,et al.  A genetic programming approach to designing convolutional neural network architectures , 2017, GECCO.

[64]  Milan Tuba,et al.  Convolutional Neural Network Architecture Design by the Tree Growth Algorithm Framework , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[65]  Taimoor Akhtar,et al.  Efficient Hyperparameter Optimization for Deep Learning Algorithms Using Deterministic RBF Surrogates , 2016, AAAI.

[66]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[67]  Min Sun,et al.  DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures , 2018, ECCV.

[68]  Aaron Klein,et al.  Hyperparameter Optimization , 2017, Encyclopedia of Machine Learning and Data Mining.

[69]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[70]  Yoshua Bengio,et al.  BinaryConnect: Training Deep Neural Networks with binary weights during propagations , 2015, NIPS.

[71]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[72]  D. Corkill Blackboard Systems , 1991 .

[73]  Matthias W. Seeger,et al.  Bayesian Optimization with Tree-structured Dependencies , 2017, ICML.

[74]  Tao Wang,et al.  Deep learning with COTS HPC systems , 2013, ICML.

[75]  Kirthevasan Kandasamy,et al.  Neural Architecture Search with Bayesian Optimisation and Optimal Transport , 2018, NeurIPS.

[76]  Guang Yang,et al.  Neural networks designing neural networks: Multi-objective hyper-parameter optimization , 2016, 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[77]  Zenghui Wang,et al.  Hybrid Stochastic GA-Bayesian Search for Deep Convolutional Neural Network Model Selection , 2019, J. Univers. Comput. Sci..

[78]  Yong Yu,et al.  Efficient Architecture Search by Network Transformation , 2017, AAAI.

[79]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[80]  Bernd Bischl,et al.  Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation , 2012, Evolutionary Computation.

[81]  Enrique Alba,et al.  Bayesian Neural Architecture Search using A Training-Free Performance Metric , 2020, Applied Soft Computing.

[82]  Sparsh Mittal,et al.  A survey of FPGA-based accelerators for convolutional neural networks , 2018, Neural Computing and Applications.

[83]  Andrew Wilson,et al.  Deep Learning Evolutionary Optimization for Regression of Rotorcraft Vibrational Spectra , 2018, 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC).

[84]  Vladlen Koltun,et al.  Multi-Task Learning as Multi-Objective Optimization , 2018, NeurIPS.

[85]  Willie Neiswanger,et al.  BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search , 2021, AAAI.

[86]  Gary G. Yen,et al.  Particle swarm optimization of deep neural networks architectures for image classification , 2019, Swarm Evol. Comput..

[87]  Timo Aila,et al.  Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning , 2016, ArXiv.

[88]  Loïc Brevault,et al.  How to Deal with Mixed-Variable Optimization Problems: An Overview of Algorithms and Formulations , 2017 .

[89]  Xiaogang Wang,et al.  Structure Learning for Deep Neural Networks Based on Multiobjective Optimization , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[90]  Jakub Nalepa,et al.  Memetic evolution of deep neural networks , 2018, GECCO.

[91]  Yujie Li,et al.  NAS-Unet: Neural Architecture Search for Medical Image Segmentation , 2019, IEEE Access.

[92]  Junjie Yan,et al.  Practical Network Blocks Design with Q-Learning , 2017, ArXiv.

[93]  Dawn Xiaodong Song,et al.  Differentiable Neural Network Architecture Search , 2018, ICLR.

[94]  Andrew J. Davison,et al.  End-To-End Multi-Task Learning With Attention , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[95]  Fei Han,et al.  Efficient network architecture search via multiobjective particle swarm optimization based on decomposition , 2019, Neural Networks.

[96]  Gang Zhang,et al.  GP-NAS: Gaussian Process Based Neural Architecture Search , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  George Papandreou,et al.  Searching for Efficient Multi-Scale Architectures for Dense Image Prediction , 2018, NeurIPS.

[98]  Jose Javier Gonzalez Ortiz,et al.  What is the State of Neural Network Pruning? , 2020, MLSys.

[99]  Chrisantha Fernando,et al.  PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017, ArXiv.

[100]  Diana Marculescu,et al.  NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Networks , 2017, ArXiv.

[101]  Greg Mori,et al.  Constraint-Aware Deep Neural Network Compression , 2018, ECCV.

[102]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[103]  Dajiang Zhou,et al.  CNN-MERP: An FPGA-based memory-efficient reconfigurable processor for forward and backward propagation of convolutional neural networks , 2016, 2016 IEEE 34th International Conference on Computer Design (ICCD).

[104]  Alex Krizhevsky,et al.  One weird trick for parallelizing convolutional neural networks , 2014, ArXiv.

[105]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[106]  Qingquan Song,et al.  Auto-Keras: An Efficient Neural Architecture Search System , 2018, KDD.

[107]  Aaron Klein,et al.  Towards Automatically-Tuned Neural Networks , 2016, AutoML@ICML.

[108]  Simon Fong,et al.  How meta-heuristic algorithms contribute to deep learning in the hype of big data analytics , 2018 .

[109]  Shinji Watanabe,et al.  Structure discovery of deep neural network based on evolutionary algorithms , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[110]  Aaron Klein,et al.  Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search , 2018, ArXiv.

[111]  Qi Yu,et al.  DLAU: A Scalable Deep Learning Accelerator Unit on FPGA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[112]  James Higgins,et al.  Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization , 2015, EvoCOP.

[113]  Frank Hutter,et al.  Maximizing acquisition functions for Bayesian optimization , 2018, NeurIPS.

[114]  Ming Du,et al.  Computer vision algorithms and hardware implementations: A survey , 2019, Integr..

[115]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[116]  Theodore Lim,et al.  SMASH: One-Shot Model Architecture Search through HyperNetworks , 2017, ICLR.

[117]  Sungroh Yoon,et al.  Big/little deep neural network for ultra low power inference , 2015, 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[118]  Gang Luo,et al.  A review of automatic selection methods for machine learning algorithms and hyper-parameter values , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[119]  Jon Atli Benediktsson,et al.  Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[120]  Alexander Sergeev,et al.  Horovod: fast and easy distributed deep learning in TensorFlow , 2018, ArXiv.

[121]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[122]  D. Sculley,et al.  Google Vizier: A Service for Black-Box Optimization , 2017, KDD.

[123]  Chongchong Xu,et al.  A Power-Efficient Accelerator Based on FPGAs for LSTM Network , 2017, 2017 IEEE International Conference on Cluster Computing (CLUSTER).

[124]  Liang Lin,et al.  SNAS: Stochastic Neural Architecture Search , 2018, ICLR.

[125]  Xiaofang Wang,et al.  Learnable Embedding Space for Efficient Neural Architecture Compression , 2019, ICLR.

[126]  Ameet Talwalkar,et al.  Paleo: A Performance Model for Deep Neural Networks , 2016, ICLR.

[127]  J. Emer,et al.  Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks , 2018 .

[128]  Ramesh Raskar,et al.  Accelerating Neural Architecture Search using Performance Prediction , 2017, ICLR.

[129]  Zhen Lin,et al.  Implementation and evaluation of deep neural networks (DNN) on mainstream heterogeneous systems , 2014, APSys.

[130]  Qingfu Zhang,et al.  Pareto Multi-Task Learning , 2019, NeurIPS.

[131]  Wei Wei,et al.  2019 Formatting Instructions for Authors Using LaTeX , 2018 .

[132]  El-Ghazali Talbi,et al.  A unified view of parallel multi-objective evolutionary algorithms , 2019, J. Parallel Distributed Comput..

[133]  Risto Miikkulainen,et al.  Designing neural networks through neuroevolution , 2019, Nat. Mach. Intell..

[134]  Yiyang Zhao,et al.  AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search , 2019, ArXiv.

[135]  Torsten Hoefler,et al.  Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. , 2018 .

[136]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[137]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[138]  Nuno Lourenço,et al.  DENSER: deep evolutionary network structured representation , 2018, Genetic Programming and Evolvable Machines.

[139]  Sercan Ömer Arik,et al.  Resource-Efficient Neural Architect , 2018, ArXiv.

[140]  Bin Wang,et al.  Evolving Deep Convolutional Neural Networks by Variable-Length Particle Swarm Optimization for Image Classification , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[141]  Li Zhang,et al.  Evolving Image Classification Architectures With Enhanced Particle Swarm Optimisation , 2018, IEEE Access.

[142]  Gul Muhammad Khan,et al.  Signal Reconstruction Using Evolvable Recurrent Neural Networks , 2018, IDEAL.

[143]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[144]  Mohamed Saber Naceur,et al.  Reinforcement learning for neural architecture search: A review , 2019, Image Vis. Comput..

[145]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[146]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[147]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[148]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[149]  Eric P. Xing,et al.  GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server , 2016, EuroSys.

[150]  Marc Snir,et al.  Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems , 2018, 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC).

[151]  Quoc V. Le,et al.  Large-Scale Evolution of Image Classifiers , 2017, ICML.

[152]  Oriol Vinyals,et al.  Hierarchical Representations for Efficient Architecture Search , 2017, ICLR.

[153]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[154]  José Miguel Hernández-Lobato Designing Neural Network Hardware Accelerators with Decoupled Objective Evaluations , 2016 .

[155]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[156]  Mengjie Zhang,et al.  A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[157]  Kaiming He,et al.  Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour , 2017, ArXiv.

[158]  Andrew Gordon Wilson,et al.  Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning , 2019, UAI.

[159]  Adam Gaier,et al.  Weight Agnostic Neural Networks , 2019, NeurIPS.

[160]  Jian Sun,et al.  Convolutional neural networks at constrained time cost , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[161]  Yaochu Jin,et al.  Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction , 2014, Neurocomputing.

[162]  Qi Luo,et al.  An Implementation and Improvement of Convolutional Neural Networks on HSA Platform , 2017, ICPCSEE.

[163]  Huiqi Li,et al.  Differentiable Neural Architecture Search in Equivalent Space with Exploration Enhancement , 2020, NeurIPS.

[164]  Sebastian Ruder,et al.  An Overview of Multi-Task Learning in Deep Neural Networks , 2017, ArXiv.

[165]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[166]  Frank Hutter,et al.  A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets , 2017, ArXiv.

[167]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[168]  Jiaxu Cui,et al.  Deep Neural Architecture Search with Deep Graph Bayesian Optimization , 2019, 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI).

[169]  Cheng-Lin Liu,et al.  DNA computing inspired deep networks design , 2020, Neurocomputing.

[170]  Lars Kotthoff,et al.  FlexiBO: Cost-Aware Multi-Objective Optimization of Deep Neural Networks , 2020, ArXiv.

[171]  Aaron Klein,et al.  Bayesian Optimization with Robust Bayesian Neural Networks , 2016, NIPS.

[172]  Frédéric Gruau,et al.  Genetic Synthesis of Modular Neural Networks , 1993, ICGA.

[173]  Xiaogang Wang,et al.  Sparsifying Neural Network Connections for Face Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[174]  Naiyan Wang,et al.  You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[175]  Travis Desell,et al.  Optimizing Long Short-Term Memory Recurrent Neural Networks Using Ant Colony Optimization to Predict Turbine Engine Vibration , 2017, Appl. Soft Comput..

[176]  Forrest N. Iandola,et al.  FireCaffe: Near-Linear Acceleration of Deep Neural Network Training on Compute Clusters , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[177]  Risto Miikkulainen,et al.  From Nodes to Networks: Evolving Recurrent Neural Networks , 2018, ArXiv.

[178]  Frank Hutter,et al.  CMA-ES for Hyperparameter Optimization of Deep Neural Networks , 2016, ArXiv.

[179]  Marc'Aurelio Ranzato,et al.  Multi-GPU Training of ConvNets , 2013, ICLR.

[180]  Ian D. Reid,et al.  Structured Binary Neural Networks for Accurate Image Classification and Semantic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[181]  Quoc V. Le,et al.  Understanding and Simplifying One-Shot Architecture Search , 2018, ICML.

[182]  Michael A. Osborne,et al.  Raiders of the Lost Architecture: Kernels for Bayesian Optimization in Conditional Parameter Spaces , 2014, 1409.4011.

[183]  Alan L. Yuille,et al.  Genetic CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[184]  Bilel Derbel,et al.  Shake Them All! - Rethinking Selection and Replacement in MOEA/D , 2014, PPSN.

[185]  Bin Wang,et al.  A Hybrid Differential Evolution Approach to Designing Deep Convolutional Neural Networks for Image Classification , 2018, Australasian Conference on Artificial Intelligence.

[186]  Wei Pang,et al.  DeepSwarm: Optimising Convolutional Neural Networks using Swarm Intelligence , 2019, UKCI.

[187]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[188]  Mark Hasegawa-Johnson,et al.  Deep Auto-Encoder Based Multi-Task Learning Using Probabilistic Transcriptions , 2017, INTERSPEECH.

[189]  Frank Hutter,et al.  Simple And Efficient Architecture Search for Convolutional Neural Networks , 2017, ICLR.

[190]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[191]  Martin Wistuba,et al.  A Survey on Neural Architecture Search , 2019, ArXiv.

[192]  Bo Chen,et al.  MnasNet: Platform-Aware Neural Architecture Search for Mobile , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[193]  Stefan Wermter,et al.  Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks , 2018, Int. J. Comput. Intell. Appl..

[194]  Nikhil R. Devanur,et al.  PipeDream: Fast and Efficient Pipeline Parallel DNN Training , 2018, ArXiv.

[195]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[196]  Steven R. Young,et al.  Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.

[197]  Changhu Wang,et al.  Network Morphism , 2016, ICML.

[198]  Ameet Talwalkar,et al.  Random Search and Reproducibility for Neural Architecture Search , 2019, UAI.

[199]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[200]  Alok Aggarwal,et al.  Aging Evolution for Image Classifier Architecture Search , 2019, AAAI 2019.

[201]  Andrea Vedaldi,et al.  Universal representations: The missing link between faces, text, planktons, and cat breeds , 2017, ArXiv.

[202]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[203]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[204]  Pedro Larrañaga,et al.  A Review on Estimation of Distribution Algorithms , 2002, Estimation of Distribution Algorithms.

[205]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[206]  Masanori Suganuma,et al.  Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search , 2018, ICML.

[207]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[208]  Farinaz Koushanfar,et al.  DeLight: Adding Energy Dimension To Deep Neural Networks , 2016, ISLPED.

[209]  Yoshua Bengio,et al.  FitNets: Hints for Thin Deep Nets , 2014, ICLR.

[210]  Chen Lei,et al.  Automated Machine Learning , 2021, Cognitive Intelligence and Robotics.