Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations

Some embedded Runge-Kutta methods for the numerical solution of the eigenvalue Schrödinger equation are developed. More specifically, a new embedded modified Runge-Kutta 4(6) Fehlberg method with minimal phase-lag and a block embedded Runge-Kutta-Fenlberg method are developed. For the numerical solution of the eigenvalue Schrödinger equation we investigate two cases. (i) The specific case, in which the potential Vx is an even function with respect to x. It is assumed, also, that the wavefunctions tend to zero for x → ± ∞. (ii) The general case for the well-known cases of the Morse potential and Woods-Saxon or Optical potential. Numerical and theoretical results show that the new approaches are more efficient compared with the well-known Runge-Kutta-Fehlberg 4(5) method.

[1]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[2]  C. S. Lai,et al.  On the Schrodinger equation for the interaction x2+λx2/(1+gx2) , 1982 .

[3]  H. Meyer,et al.  Dynamic‐group approach to the x2+λx2/(1+gx2) potential , 1986 .

[4]  A. Mitra On the interaction of the type λx2/(1+gx2) , 1978 .

[5]  Tom E. Simos Exponential fitted methods for the numerical integration of the Schrdinger equation , 1992 .

[6]  Veerle Fack,et al.  Extended) Numerov method for computing eigenvalues of specific Schrodinger equations , 1987 .

[7]  Veerle Fack,et al.  A finite difference approach for the calculation of perturbed oscillator energies , 1985 .

[8]  N. Bessis,et al.  A note on the Schrödinger equation for the x2+λx2/(1+gx2) potential , 1980 .

[9]  J. Killingbeck Some applications of perturbation theory to numerical integration methods for the Schrödinger equation , 1979 .

[10]  V. Fack,et al.  A program for the calculation of energy eigenvalues and eigenstates of a schrödinger equation , 1986 .

[11]  Y. Ezawa,et al.  A high-speed method for eigenvalue problems III case of unsymmetrical potentials in Milne's method , 1994 .

[12]  G. Flessas Definite integrals as solutions for the x2+λx2/(1+gx2) potential , 1982 .

[13]  T. E. Simos,et al.  A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .

[14]  G. Flessas On the Schrdinger equation for the x2 + ?x2/(1 + gx2) interaction , 1981 .

[15]  M. Nagarajan,et al.  Exact solutions of the Schrodinger equation (-d/dx2 + x2 + λx2/(1 + gx2))ψ(x) = Eψ(x) , 1982 .

[16]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[17]  A. Messiah Quantum Mechanics , 1961 .

[18]  H. Meyer,et al.  Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems , 1987 .

[19]  Majida Kobeissi,et al.  On testing difference equations for the diatomic eigenvalue problem , 1988 .

[20]  Gh. Adam,et al.  A first-order perturbative numerical method for the solution of the radial schrödinger equation , 1976 .

[21]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[22]  T. E. Simos Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .

[23]  V. S. Varma On the x2+λx2/(1+gx2) interaction , 1981 .

[24]  T. E. Simos,et al.  Eighth order methods with minimal phase‐lag for accurate computations for the elastic scattering phase‐shift problem , 1997 .