Silicon bipolar device structures for digital applications: technology trends and future directions

The double-polysilicon self-aligned bipolar device structure has come a long way since its first inception, but there is still room for further scaling of this structure and continued improvements in performance. An analysis of the current state-of-the-art double-poly structure leads naturally to a discussion of future trends and technologies necessary to continue scaling into the sub-0.25 /spl mu/m regime. In addition, it has become highly desirable to extend bipolar processes in new directions to take advantage of the opportunities offered by emerging materials technologies, such as bonded silicon-on-insulator films and medium or low temperature Si and SiGe epitaxy. Opportunities also exist for high-performance bipolars in BiCMOS technology and in complementary bipolar processes for low-power, high-speed digital applications. These extensions beyond "conventional" bipolar technology will be discussed in terms of their requirements and the device structures that are evolving to match these needs. >

[1]  C. Lage,et al.  An advanced 0.8 mu m complementary BiCMOS technology for ultra-high speed circuit performance , 1990, Proceedings on Bipolar Circuits and Technology Meeting.

[2]  J.M.C. Stork,et al.  A SiGe-base PNP ECL circuit technology , 1993, Symposium 1993 on VLSI Technology.

[3]  Y. Furumura,et al.  Low-temperature epitaxy using Si2H6 , 1990 .

[4]  G. Li,et al.  On the narrow-emitter effect of advanced shallow profile bipolar transistors , 1987, 1987 International Electron Devices Meeting.

[5]  R. Kopl,et al.  Process-optimization for sub-30 ps BiCMOS technologies for mixed ECL/CMOS applications , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[6]  E. Hackbarth,et al.  On the very-high-current degradations on Si n-p-n transistors , 1990 .

[7]  Paul G. Y. Tsui,et al.  A 0.4 micron fully complementary BiCMOS technology for advanced logic and microprocessor applications , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[8]  M. Brassington,et al.  An advanced BiCMOS process utilizing ultra-thin silicon epitaxy over arsenic buried layers , 1989, International Technical Digest on Electron Devices Meeting.

[9]  P. Lu,et al.  Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors , 1989 .

[10]  F. Lee,et al.  Dielectric isolated integrated circuit substrate processes , 1969 .

[11]  John D. Cressler,et al.  Silicon germanium heterojunction bipolar technology: the next leap in silicon? , 1994, IEEE International Solid-State Circuits Conference.

[12]  Yoichi Tamaki,et al.  A 0.5- mu m very-high-speed silicon bipolar devices technology U-groove-isolated SICOS , 1991 .

[13]  T. Yamazaki,et al.  A 220-MHz pipelined 16-Mb BiCMOS SRAM with PLL proportional self-timing generator , 1994 .

[14]  E. Ganin,et al.  Design issues for SiGe heterojunction bipolar transistors , 1989, Proceedings of the Bipolar Circuits and Technology Meeting.

[15]  R. Mountain,et al.  Fully isolated lateral bipolar—MOS transistors fabricated in zone-melting-recrystallized Si films on SiO2 , 1983, IEEE Electron Device Letters.

[16]  Kunihiko Yamaguchi,et al.  A 1.5 ns 256 kb BiCMOS SRAM with 11 k 60 ps logic gates , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[17]  S. M. Hu,et al.  Stress from isolation trenches in silicon substrates , 1990 .

[18]  D.D. Tang,et al.  Lateral encroachment of extrinsic-base dopant in submicrometer bipolar transistors , 1987, IEEE Electron Device Letters.

[19]  J. Teplik,et al.  An advanced 0.4 mu m BiCMOS technology for high performance ASIC applications , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[20]  T. Yamazaki,et al.  A 6 ns 4 Mb ECL I/O BiCMOS SRAM with LV-TTL mask option , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[21]  T. Yamaguchi,et al.  Submicron bipolar-CMOS technology using 16 GHz f/sub T/ double poly-Si bipolar devices , 1988, Technical Digest., International Electron Devices Meeting.

[22]  Joachim N. Burghartz,et al.  Identification of perimeter depletion and emitter plug effects in deep-submicrometer, shallow-junction polysilicon emitter bipolar transistors , 1992 .

[23]  Ching-Te Chuang,et al.  High-speed low-power direct-coupled complementary push-pull ECL circuit , 1992 .

[24]  M. P. Brassington,et al.  An advanced single-level polysilicon submicrometer BiCMOS technology , 1989 .

[25]  S. Kameyama,et al.  A high-speed bipolar LSI process using self-aligned double diffusion polysilicon technology , 1986, 1986 International Electron Devices Meeting.

[26]  S. Uppili,et al.  Process and device characterization for a 30-GHz f/sub T/ submicrometer double poly-Si bipolar technology using BF/sub 2/-implanted base with rapid thermal process , 1993 .

[27]  J. D. Cressler,et al.  High Performance Complementary Bipolar Technology , 1993, Symposium 1993 on VLSI Technology.

[28]  M. Nakamae,et al.  A 40 GHz f/sub T/ Si bipolar transistor LSI technology , 1989, International Technical Digest on Electron Devices Meeting.

[29]  Mitiko Miura-Mattausch,et al.  Dependence of current gain β on spacer geometry and emitter size in polysilicon self-aligned bipolar transistors , 1990 .

[30]  Torkel Amborg Performance Predictions of Scaled BiCMOS Gates Using Physical Simulation , 1992 .

[31]  Y. Taur,et al.  A new planarization technique, using a combination of RIE and chemical mechanical polish (CMP) , 1989, International Technical Digest on Electron Devices Meeting.

[32]  J.D. Cressler,et al.  Novel in-situ doped polysilicon emitter process with buried diffusion source (BDS) , 1991, IEEE Electron Device Letters.

[33]  Asanga H. Perera,et al.  A high performance 0.5 mu m BiCMOS triple polysilicon technology for 4 Mb fast SRAMs , 1990, International Technical Digest on Electron Devices.

[34]  H. Ichino,et al.  0.5-/spl mu/m bipolar technology using a new base formation method: SST1C , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[35]  A. Bellaouar,et al.  BiCMOS at low supply voltage , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[36]  Ching-Te Chuang,et al.  AC-coupled complementary push-pull ECL circuit with 34 fJ power-delay product , 1993 .

[37]  T. Nishida,et al.  What can replace BiCMOS at lower supply voltage regime? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[38]  Hadis Morkoç,et al.  Si/SiGe heterostructures and devices , 1993 .

[39]  S. Tanaka,et al.  A 120 MHz BiCMOS superscalar RISC processor , 1993, Symposium 1993 on VLSI Circuits.

[40]  T. Arnborg Performance predictions of scaled BiCMOS gates using physical simulation , 1992 .

[41]  Peter Ashburn,et al.  Investigation of boron diffusion in polysilicon and its application to the design of p-n-p polysilicon emitter bipolar transistors with shallow emitter junctions , 1991 .

[42]  J.M.C. Stork,et al.  Vertical profile optimization of very high frequency epitaxial Si- and SiGe-base bipolar transistors , 1993, Proceedings of IEEE International Electron Devices Meeting.

[43]  Keith A. Jenkins,et al.  The design and optimization of high-performance, double-poly self-aligned p-n-p technology , 1991 .

[44]  K. Ehinger,et al.  Ultrashallow Emitter-Base Profiles by Double Diffusion , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[45]  D. Steiss,et al.  A three-million-transistor microprocessor , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[46]  Minoru Nakamura,et al.  A sub-30 psec Si bipolar LSI technology , 1988, Technical Digest., International Electron Devices Meeting.

[47]  J. Delgado,et al.  UHF-1: a high speed complementary bipolar analog process on SOI , 1992, Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting.

[48]  T. Nishida,et al.  A High-Speed Low Process Complexity Quarter-Micron BiCMOS Technology , 1993, Symposium 1993 on VLSI Technology.

[49]  G. Li,et al.  A sub-50 ps single poly planar bipolar technology , 1988, Technical Digest., International Electron Devices Meeting.

[50]  James D. Hayden,et al.  An ultra-shallow link base for a double polysilicon bipolar transistor , 1992, Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting.

[51]  D.J. Roulston,et al.  Minority-carrier injection into polysilicon emitters , 1982, IEEE Transactions on Electron Devices.

[52]  J. D. Chlipala,et al.  Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair , 1989 .

[53]  J. D. Burnett,et al.  Modeling hot-carrier effects in polysilicon emitter bipolar transistors , 1988 .

[54]  H. N. Ghosh,et al.  Design and development of an ultralow-capacitance, high-performance pedestal transistor , 1971 .

[55]  A. Chantre,et al.  An investigation of nonideal base currents in advanced self-aligned 'etched-polysilicon' emitter bipolar transistors , 1991 .

[56]  R.D. Isaac,et al.  Effect of emitter contact on current gain of silicon bipolar devices , 1979, 1979 International Electron Devices Meeting.

[57]  K. Ogiue,et al.  U-groove isolation technique for high speed bipolar VLSI's , 1982, 1982 International Electron Devices Meeting.

[58]  J. G. Groot,et al.  The SIS tunnel emitter: A theory for emitters with thin interface layers , 1979 .

[59]  J.M.C. Stork,et al.  SiGe-base heterojunction bipolar transistors: physics and design issues , 1990, International Technical Digest on Electron Devices.

[60]  Eric Lane,et al.  Characterization of Collector‐Emitter Leakage in Self‐Aligned Double‐Poly Bipolar Junction Transistors , 1993 .

[61]  S.K. Wiedmann Potential of bipolar complementary device/Circuit technology , 1987, 1987 International Electron Devices Meeting.

[62]  G. Eiden,et al.  High-speed polysilicon emitter—base bipolar transistor , 1986, IEEE Electron Device Letters.

[63]  T. Kure,et al.  A 9.4-/spl mu/m/sup 2/ 38-GHz sidewall polycide base bipolar (SPOTEC) with half-micron CMOS technology for very-high-speed ULSIs , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[64]  P.K. Ko,et al.  Bipolar-FET hybrid-mode operation of quarter-micrometer SOI MOSFETs (MESFETs read MOSFETs) , 1993, IEEE Electron Device Letters.

[65]  D.D. Tang,et al.  Scaling properties of bipolar devices , 1980, 1980 International Electron Devices Meeting.

[66]  D. Harame,et al.  75-GHz f/sub T/ SiGe-base heterojunction bipolar transistors , 1990, IEEE Electron Device Letters.

[67]  R.D. Isaac,et al.  Experimental study of the minority-carrier transport at the polysilicon—monosilicon interface , 1985, IEEE Transactions on Electron Devices.

[68]  R. J. Jaccodine,et al.  Plasma Etching of Tungsten Polycide Structures Using NF 3 ‐ Mixed Halocarbon Etchants , 1991 .

[69]  Y. Katsumata,et al.  Analysis of process margins for emitter-base self-alignment structures through a combination of simulation and experiment , 1992, Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting.

[70]  Keith A. Jenkins,et al.  Optimization of SiGe HBT technology for high speed analog and mixed-signal applications , 1993, Proceedings of IEEE International Electron Devices Meeting.

[71]  Takashi Ito,et al.  A Thin-Base Lateral Bipolar Transistor Fabricated on Bonded SOI , 1991, 1991 Symposium on VLSI Technology.

[72]  Keith A. Jenkins,et al.  A 27 GHz 20 ps PNP technology , 1989, International Technical Digest on Electron Devices Meeting.

[73]  Y. Taur,et al.  A novel high-performance lateral bipolar on SOI , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[74]  Toru Shiomi,et al.  A high performance 0.6 mu m BiCMOS SRAM technology with emitter-base self-aligned bipolar transistors and retrograde well for MOS transistors , 1992, 1992 Symposium on VLSI Technology Digest of Technical Papers.

[75]  Jean-Jacques Hajjar,et al.  XFCB: a high speed complementary bipolar process on bonded SOI , 1992, Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting.

[76]  M. Rodder,et al.  Silicon-on-insulator bipolar transistors , 1983, IEEE Electron Device Letters.

[77]  D.D. Tang,et al.  A reduced-field design concept for high-performance bipolar transistors , 1989, IEEE Electron Device Letters.

[78]  Bernard S. Meyerson,et al.  SiGe heterojunctions: devices and applications , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[79]  N. Tracht,et al.  MOSAIC V-a very high performance bipolar technology , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[80]  T. Hiramoto,et al.  A 27 GHz double polysilicon bipolar technology on bonded SOI with embedded 58 mu m/sup 2/ CMOS memory cells for ECL-CMOS SRAM applications , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[81]  K. Ehinger,et al.  Modular deep trench isolation scheme for 38 GHz self-aligned double polysilicon bipolar devices , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[82]  D.D. Tang,et al.  High-performance bipolar technology for improved ECL power delay , 1991, IEEE Electron Device Letters.

[83]  H. Goto,et al.  Analysis of highly doped collector transistors by using two-dimensional process/device simulation and its application of ECL circuits , 1991 .

[84]  Chenming Hu,et al.  A versatile, SOI BiCMOS technology with complementary lateral BJT's , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[85]  Denny D. Tang,et al.  Junction degradation in bipolar transistors and the reliability imposed constraints to scaling and design , 1988 .

[86]  T. Hashimoto,et al.  Sub-20 psec ECL circuits with 50 GHz fmax self-aligned SiGe HBTs , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[87]  H. Kato,et al.  A 9 ns 4 Mb BiCMOS SRAM with 3.3 V operation , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[88]  D. Tang,et al.  Bipolar circuit scaling , 1979, 1979 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[89]  D.L. Harame,et al.  A high-speed complementary silicon bipolar technology with 12-fJ power-delay product , 1993, IEEE Electron Device Letters.

[90]  H. Goto,et al.  An isolation technology for high performance bipolar memories — IOP-II , 1982, 1982 International Electron Devices Meeting.

[91]  T. Takada,et al.  Bipolar technology for 0.5-micron-wide base transistor with an ECL gate delay of 21.5 picoseconds , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[92]  K. Washio,et al.  A 35-GHz 20- mu m/sup 2/ self-aligned PNP technology for ultra-high-speed high-density complementary bipolar ULSIs , 1992, 1992 Symposium on VLSI Technology Digest of Technical Papers.

[93]  Pong-Fei Lu,et al.  Boron-doped emitters for high-performance vertical pnp transistors , 1989, Proceedings of the Bipolar Circuits and Technology Meeting.

[94]  Ching-Te Chuang,et al.  On the scaling property of trench isolation capacitance for advanced high-performance ECL circuits , 1989 .

[95]  Y. Kobayashi,et al.  High performance LSI process technology: SST CBi-CMOS , 1988, Technical Digest., International Electron Devices Meeting.

[96]  J.M.C. Stork,et al.  Partial-SOI isolation structure for reduced bipolar transistor parasitics , 1992, IEEE Electron Device Letters.

[97]  A. E. Michel,et al.  Rapid annealing and the anomalous diffusion of ion implanted boron into silicon , 1987 .

[98]  M. Soda,et al.  Si-analog IC's for 20 Gb/s optical receiver , 1994 .

[99]  Kunihiro Suzuki,et al.  Optimum base doping profile for minimum base transit time , 1991 .

[100]  Avtar Saini,et al.  Design of the Intel Pentium processor , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.

[101]  Takashi Ito,et al.  Advanced Metal Oxide Semiconductor and Bipolar Devices on Bonded Silicon‐on‐Insulators , 1993 .

[102]  A. Felder,et al.  A high performance BiCMOS process featuring 40 GHz/21 ps , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[103]  J.L. de Jong,et al.  QUBiC2: BiCMOS device technology for 17 GHz bipolar and 0.5 mu m CMOS , 1990, Proceedings on Bipolar Circuits and Technology Meeting.

[104]  D.D. Tang,et al.  1.25 /spl mu/m Deep-Groove-Isolated Self-Aligned Bipolar Circuits , 1982, IEEE Journal of Solid-State Circuits.

[105]  Y. Taur,et al.  A high performance BiCMOS technology using 0.25 mu m CMOS and double poly 47 GHz bipolar , 1992, 1992 Symposium on VLSI Technology Digest of Technical Papers.

[106]  T. W. Sigmon,et al.  Emitter and base fabrication in advanced bipolar transistors using gas immersion laser doping , 1988, Proceedings of the 1988 Bipolar Circuits and Technology Meeting,.

[107]  Tokuo Kure,et al.  A 64 GHz Si bipolar transistor using in-situ phosphorus doped polysilicon emitter technology , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[108]  J. Graul,et al.  High-performance transistors with arsenic-implanted polysil emitters , 1976 .

[109]  D.D. Tang,et al.  A scaled 0.25- mu m bipolar technology using full e-beam lithography , 1992, IEEE Electron Device Letters.

[110]  D.D. Tang,et al.  50-GHz self-aligned silicon bipolar transistors with ion-implanted base profiles , 1990, IEEE Electron Device Letters.

[111]  J. Hajjar,et al.  Self-heating in high performance bipolar transistors fabricated on SOI substrates , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[112]  H. Nakashiba,et al.  An advanced PSA technology for high-speed bipolar LSI , 1980 .

[113]  Yoshihito Amemiya,et al.  A 20-ps Si bipolar IC using advanced super self-aligned process technology with collector ion implantation , 1989 .

[114]  Maureen Y. Lau,et al.  Lateral Autodoping Suppression by Selective Epitaxy Capping and Its Application in High Speed BiCMOS , 1988 .

[115]  M. Y. Lau,et al.  Non-overlapping super self-aligned BiCMOS with 87 ps low power ECL , 1988, Technical Digest., International Electron Devices Meeting.

[116]  J.Y.-C. Sun,et al.  Perimeter and plug effects in deep sub-micron polysilicon emitter bipolar transistors , 1990, Digest of Technical Papers.1990 Symposium on VLSI Technology.

[117]  C.T. Chuang NTL with complementary emitter-follower driver: a high-speed low-power push-pull logic circuit , 1990, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.

[118]  R.D. Gardner,et al.  A new approach to optimizing the base profile for high-speed bipolar transistors , 1990, IEEE Electron Device Letters.

[119]  I. Post,et al.  Polysilicon emitters for bipolar transistors: a review and re-evaluation of theory and experiment , 1992 .

[120]  J.M.C. Stork,et al.  A high performance epitaxial SiGe-base ECL BiCMOS technology , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[121]  K. Nummy,et al.  ULSI Quality Silicon Epitaxial Growth at 850°C , 1990 .

[122]  S. K. Wiedmann Charge Buffered Logic (CBL) - A New Complementary Bipolar Circuit Concept , 1985, 1985 Symposium on VLSI Technology. Digest of Technical Papers.

[123]  R. Dekker,et al.  An ultra low power lateral bipolar polysilicon emitter technology on SOI , 1993, Proceedings of IEEE International Electron Devices Meeting.

[124]  S. Konaka,et al.  HSST BiCMOS technology with 26 ps ECL and 45 ps 2 V CMOS inverter , 1990, International Technical Digest on Electron Devices.

[125]  Fumio Murai,et al.  SPOTEC-a sub-10- mu m/sup 2/ bipolar transistor structure using fully self-aligned sidewall polycide base technology , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[126]  A. Felder,et al.  An SOI-based high performance self-aligned bipolar technology featuring 20 ps gate-delay and a 8.6 fj power-delay product. , 1993, Symposium 1993 on VLSI Technology.

[127]  J.L. de Jong,et al.  Thin base formation by double diffused polysilicon technology , 1988, Proceedings of the 1988 Bipolar Circuits and Technology Meeting,.

[128]  Y. Taur,et al.  BiCMOS technology with 60 GHz n-p-n bipolar and 0.25 mu m CMOS , 1992, IEEE Electron Device Letters.

[129]  Keith A. Jenkins,et al.  35 GHz/35 psec ECL pnp technology , 1990, International Technical Digest on Electron Devices.

[130]  H. Nambu,et al.  Capacitor-coupled complementary emitter-follower for ultra-high-speed low-power bipolar logic circuits , 1993, Symposium 1993 on VLSI Circuits.

[131]  E. A. Valsamakis,et al.  Process design for merged complementary BiCMOS , 1990, International Technical Digest on Electron Devices.

[132]  R. G. Swartz,et al.  A half-micron super self-aligned BiCMOS technology for high speed applications , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[133]  D. R. Collins,et al.  h FE degradation due to reverse bias emitter-base junction stress , 1969 .

[134]  J.M.C. Stork,et al.  55 Ghz Polysilicon-Emitter Graded Sige-Base Pnp Transistors , 1991, 1991 Symposium on VLSI Technology.

[135]  E. de Fresart,et al.  High-performance SiGe epitaxial base bipolar transistors produced by a reduced-pressure CVD reactor , 1993, IEEE Electron Device Letters.

[136]  Erich Kasper,et al.  High speed SiGe-HBT with very low base sheet resistivity , 1993, Proceedings of IEEE International Electron Devices Meeting.

[137]  A. Anzai,et al.  A fully SiO/sub 2/-isolated self-aligned SOI-bipolar transistor for VLSIs , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[138]  Y. Taur,et al.  A high-performance 0.5-μm BiCMOS technology with 3.3-V CMOS devices , 1990, Digest of Technical Papers.1990 Symposium on VLSI Technology.