Exoplanets as Sub-GeV Dark Matter Detectors.

We present exoplanets as new targets to discover dark matter (DM). Throughout the Milky Way, DM can scatter, become captured, deposit annihilation energy, and increase the heat flow within exoplanets. We estimate upcoming infrared telescope sensitivity to this scenario, finding actionable discovery or exclusion searches. We find that DM with masses above about an MeV can be probed with exoplanets, with DM-proton and DM-electron scattering cross sections down to about 10^{-37}  cm^{2}, stronger than existing limits by up to six orders of magnitude. Supporting evidence of a DM origin can be identified through DM-induced exoplanet heating correlated with galactic position, and hence DM density. This provides new motivation to measure the temperature of the billions of brown dwarfs, rogue planets, and gas giants peppered throughout our Galaxy.

[1]  R. Leane,et al.  Evaporation barrier for dark matter in celestial bodies , 2023, Journal of Cosmology and Astroparticle Physics.

[2]  R. Leane,et al.  Floating Dark Matter in Celestial Bodies , 2022, 2209.09834.

[3]  S. Palomares-Ruiz,et al.  Evaporation of dark matter from celestial bodies , 2021, Journal of Cosmology and Astroparticle Physics.

[4]  R. Leane,et al.  Celestial-body focused dark matter annihilation throughout the Galaxy , 2021, Physical Review D.

[5]  D. Gerdes,et al.  Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. , 2021, Physical review letters.

[6]  N. Raj,et al.  Observing the thermalization of dark matter in neutron stars , 2020, 2009.10728.

[7]  M. Cirelli,et al.  INTEGRAL x-ray constraints on sub-GeV dark matter , 2020, Physical Review D.

[8]  R. Wechsler,et al.  Erratum: “Constraints on Dark Matter Microphysics from the Milky Way Satellite Population” (2019, ApJL, 878, 32) , 2020, The Astrophysical Journal.

[9]  M. Chan,et al.  Constraining the spin-independent elastic scattering cross section of dark matter using the Moon as a detection target and the background neutrino data , 2020, 2007.01589.

[10]  B. Dasgupta,et al.  Dark matter capture in celestial objects: light mediators, self-interactions, and complementarity with direct detection , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  Samson A. Johnson,et al.  Predictions of the Nancy Grace Roman Space Telescope Galactic Exoplanet Survey. II. Free-floating Planet Detection Rates , 2020, The Astronomical Journal.

[12]  R. Leane,et al.  Indirect Detection of Dark Matter in the Galaxy , 2020, 2006.00513.

[13]  H. R. Harris,et al.  Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector , 2020, Physical Review D.

[14]  C. Ilie,et al.  Comment on “Multiscatter stellar capture of dark matter” , 2020, 2005.05946.

[15]  A. Drlica-Wagner,et al.  SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.

[16]  N. Raj,et al.  Kinetic Heating from Contact Interactions with Relativistic Targets: Electrons Capture Dark Matter in Neutron Stars , 2020, 2004.09539.

[17]  Ebrahim Hassani,et al.  The effect of dark matter on stars at the Galactic center: The paradox of youth problem , 2020, International Journal of Modern Physics D.

[18]  R. Poleski,et al.  A Free-floating or Wide-orbit Planet in the Microlensing Event OGLE-2019-BLG-0551 , 2020, The Astronomical Journal.

[19]  B. Paul,et al.  First Germanium-Based Constraints on Sub-MeV Dark Matter with the EDELWEISS Experiment. , 2020, Physical review letters.

[20]  J. Beacom,et al.  Co-SIMP Miracle , 2020, 2002.04038.

[21]  D. Gerdes,et al.  Increasing the census of ultracool dwarfs in wide binary and multiple systems using Dark Energy Survey DR1 and Gaia DR2 data , 2020, 2001.11015.

[22]  P. Tinyakov,et al.  Constraints on dark matter from the Moon , 2019, Physics Letters B.

[23]  N. Raj,et al.  Relativistic capture of dark matter by electrons in neutron stars , 2019, 1911.13293.

[24]  R. Leane,et al.  Warming nuclear pasta with dark matter: kinetic and annihilation heating of neutron star crusts , 2019, Journal of Cosmology and Astroparticle Physics.

[25]  J. Bramante,et al.  Terrestrial and martian heat flow limits on dark matter , 2019, Physical Review D.

[26]  J. Smirnov,et al.  Thermal history of composite dark matter , 2019, Physical Review D.

[27]  N. Bell,et al.  Improved treatment of dark matter capture in neutron stars , 2020 .

[28]  T. Barclay,et al.  The Feasibility of Directly Imaging Nearby Cold Jovian Planets with MIRI/JWST , 2019, The Astronomical Journal.

[29]  M. Penny,et al.  WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space , 2019, The Astrophysical Journal.

[30]  J. Silk,et al.  Asteroseismology of Red Clump Stars as a Probe of the Dark Matter Content of the Galaxy Central Region , 2019, The Astrophysical Journal.

[31]  V. C. Antochi,et al.  Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. , 2019, Physical review letters.

[32]  D. Amidei,et al.  Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB. , 2019, Physical review letters.

[33]  J. Beacom,et al.  Strong new limits on light dark matter from neutrino experiments , 2019, Physical Review D.

[34]  J. Heeck,et al.  Dark matter interactions with muons in neutron stars , 2019, Physical Review D.

[35]  Hai-Nan Lin,et al.  The dark matter profiles in the Milky Way , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  B. Dasgupta,et al.  Dark matter capture in celestial objects: improved treatment of multiple scattering and updated constraints from white dwarfs , 2019, Journal of Cosmology and Astroparticle Physics.

[37]  K. Hamaguchi,et al.  Dark matter heating vs. rotochemical heating in old neutron stars , 2019, Physics Letters B.

[38]  Sumit Ghosh,et al.  Sub-GeV dark matter model , 2019, Physical Review D.

[39]  H. Li,et al.  Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory. , 2019, Physical review letters.

[40]  V. Narayan,et al.  Type Ia supernovae from dark matter core collapse , 2019, Physical Review D.

[41]  J. Bramante,et al.  Supernovae sparked by dark matter in white dwarfs , 2019, Physical Review D.

[42]  Risa H. Wechsler,et al.  Constraints on Dark Matter Microphysics from the Milky Way Satellite Population , 2019, The Astrophysical Journal.

[43]  N. Bell,et al.  Capture of leptophilic dark matter in neutron stars , 2019, Journal of Cosmology and Astroparticle Physics.

[44]  C. Pagliarone,et al.  First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.

[45]  Maxwell X. Cai,et al.  Survivability of planetary systems in young and dense star clusters , 2019, Astronomy & Astrophysics.

[46]  V. C. Antochi,et al.  Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. , 2019, Physical review letters.

[47]  Juan Estrada,et al.  SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper CCD. , 2019, Physical review letters.

[48]  R. Sturani,et al.  Detecting dark matter with neutron star spectroscopy , 2019, Journal of Cosmology and Astroparticle Physics.

[49]  T. Hambye,et al.  New analysis of neutron star constraints on asymmetric dark matter , 2018, Journal of Cosmology and Astroparticle Physics.

[50]  F. Sala,et al.  Light Dark Matter at Neutrino Experiments. , 2018, Physical review letters.

[51]  T. Bringmann,et al.  Novel Direct Detection Constraints on Light Dark Matter. , 2018, Physical review letters.

[52]  J. Beacom,et al.  Reverse direct detection: Cosmic ray scattering with light dark matter , 2018, Physical Review D.

[53]  D. Maoz,et al.  Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf , 2018, The Astronomical Journal.

[54]  P. Gangi Results of the 1 tonne × year WIMP search with XENON1T , 2019 .

[55]  J. Caballero A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? , 2018, Geosciences.

[56]  N. Bell,et al.  Heating up neutron stars with inelastic dark matter , 2018, Journal of Cosmology and Astroparticle Physics.

[57]  Massimo Marengo,et al.  The Science Advantage of a Redder Filter for WFIRST , 2018, 1806.00554.

[58]  J. Beacom,et al.  GeV-scale thermal WIMPs: Not even slightly ruled out , 2018, Physical Review D.

[59]  H. Isaacson,et al.  HAT-P-11: Discovery of a Second Planet and a Clue to Understanding Exoplanet Obliquities , 2018, 1805.09352.

[60]  D. Neufeld,et al.  Dark Matter that Interacts with Baryons: Density Distribution within the Earth and New Constraints on the Interaction Cross-section , 2018, The Astrophysical Journal.

[61]  V. Narayan,et al.  White dwarfs as dark matter detectors , 2018, Physical Review D.

[62]  M. F. Andersen,et al.  Precise radial velocities of giant stars , 2018, Astronomy & Astrophysics.

[63]  J. Collar Search for a nonrelativistic component in the spectrum of cosmic rays at Earth , 2018, Physical Review D.

[64]  H. R. Harris,et al.  First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector. , 2018, Physical review letters.

[65]  Yen-Hsun Lin,et al.  Reheating neutron stars with the annihilation of self-interacting dark matter , 2018, Journal of High Energy Physics.

[66]  Miguel Sofo Haro,et al.  SENSEI: First Direct-Detection Constraints on Sub-GeV Dark Matter from a Surface Run. , 2018, Physical review letters.

[67]  A. Mitridate,et al.  Bounds on Dark Matter decay from 21 cm line , 2018, Journal of Cosmology and Astroparticle Physics.

[68]  M. Tuomi,et al.  Detection of the closest Jovian exoplanet in the Epsilon Indi triple system , 2018, 1803.08163.

[69]  A. Nelson,et al.  Neutron Stars Exclude Light Dark Baryons. , 2018, Physical review letters.

[70]  G. B. Suffritti,et al.  Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.

[71]  D. Hooper,et al.  Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons , 2018, Physical Review D.

[72]  C. Kouvaris,et al.  The Sun as a sub-GeV dark matter accelerator , 2017, 1709.06573.

[73]  J. Pradler,et al.  Directly Detecting MeV-Scale Dark Matter Via Solar Reflection. , 2017, Physical review letters.

[74]  N. Raj,et al.  Neutron stars at the dark matter direct detection frontier , 2017, 1707.09442.

[75]  H. R. Harris,et al.  Low-mass dark matter search with CDMSlite , 2017, 1707.01632.

[76]  S. Knapen,et al.  Light dark matter: Models and constraints , 2017, 1709.07882.

[77]  R. Poleski,et al.  No large population of unbound or wide-orbit Jupiter-mass planets , 2017, Nature.

[78]  M. Reece,et al.  Last electroweak WIMP standing: pseudo-dirac higgsino status and compact stars as future probes , 2017, 1705.04843.

[79]  Francesco D’Eramo,et al.  Surprises from complete vector portal theories: New insights into the dark sector and its interplay with Higgs physics , 2017, 1705.03897.

[80]  N. Bell,et al.  Enhancing Dark Matter Annihilation Rates with Dark Bremsstrahlung , 2017, 1705.01105.

[81]  C. Morley,et al.  The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy , 2017, 1704.03573.

[82]  N. Raj,et al.  Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos. , 2017, Physical review letters.

[83]  Adam Martin,et al.  Multiscatter stellar capture of dark matter , 2017, 1703.04043.

[84]  R. Essig,et al.  New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon , 2017, 1703.00910.

[85]  A. Santerne,et al.  The SOPHIE search for northern extrasolar planets: XII. Three giant planets suitable for astrometric mass determination with Gaia , 2017, 1702.06393.

[86]  S. Palomares-Ruiz,et al.  Dark matter in the Sun: scattering off electrons vs nucleons , 2017, 1702.02768.

[87]  P. Panci,et al.  Probing leptophilic dark sectors with hadronic processes , 2017, 1702.00016.

[88]  N. Bell,et al.  Impact of mass generation for spin-1 mediator simplified models , 2017 .

[89]  N. Bell,et al.  Impact of mass generation for simplified dark matter models , 2016, 1610.03063.

[90]  E. Moulin The inner 300 parsecs of the Milky Way seen by H.E.S.S.: a Pevatron in the Galactic Centre , 2017 .

[91]  J. Silk,et al.  Light dark matter scattering in outer neutron star crusts , 2016, 1607.06815.

[92]  S. Valluri,et al.  Analytic Models of Brown Dwarfs and the Substellar Mass Limit , 2016, 1607.04338.

[93]  F. Kahlhoefer,et al.  How to save the WIMP: global analysis of a dark matter model with two s-channel mediators , 2016, 1606.07609.

[94]  N. Bell,et al.  Dark forces in the sky: signals from Z′ and the dark Higgs , 2016, 1605.09382.

[95]  F. V. Massoli,et al.  Low-mass dark matter search using ionization signals in XENON100 , 2016, 1605.06262.

[96]  S. Mohanty,et al.  Constraints on Leptophilic Light Dark Matter from Internal Heat Flux of Earth , 2016, 1603.06350.

[97]  K. Ulaczyk,et al.  MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING , 2015, 1510.02097.

[98]  Marshall C. Johnson,et al.  TWO NEW LONG-PERIOD GIANT PLANETS FROM THE MCDONALD OBSERVATORY PLANET SEARCH AND TWO STARS WITH LONG-PERIOD RADIAL VELOCITY SIGNALS RELATED TO STELLAR ACTIVITY CYCLES , 2015, 1512.02965.

[99]  E. Marchetti,et al.  Stellar density profile and mass of the Milky Way Bulge from VVV data , 2015, 1510.07425.

[100]  F. Kahlhoefer,et al.  Implications of unitarity and gauge invariance for simplified dark matter models , 2015, 1510.02110.

[101]  J. Bramante Dark Matter Ignition of Type Ia Supernovae. , 2015, Physical review letters.

[102]  P. Graham,et al.  Dark Matter Triggers of Supernovae , 2015, 1505.04444.

[103]  T. Henning,et al.  Kepler-539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction , 2015, 1504.04625.

[104]  J. Silk,et al.  Constraining decaying dark matter with neutron stars , 2014, 1403.6111.

[105]  G. Bertone,et al.  ournal of C osmology and A stroparticle hysics Dynamical constraints on the dark matter distribution in the Milky Way , 2022 .

[106]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[107]  N. Bell,et al.  Leptophilic dark matter with Z ' interactions , 2014, 1407.3001.

[108]  J. Silk,et al.  A PARTICLE DARK MATTER FOOTPRINT ON THE FIRST GENERATION OF STARS , 2014, 1404.3909.

[109]  J. Wacker,et al.  Mechanism for thermal relic dark matter of strongly interacting massive particles. , 2014, Physical review letters.

[110]  Joachim Kopp,et al.  Loopy constraints on leptophilic dark matter and internal bremsstrahlung , 2014, 1401.6457.

[111]  C. G. Tinney,et al.  THE ANGLO-AUSTRALIAN PLANET SEARCH. XXIII. TWO NEW JUPITER ANALOGS , 2014, 1401.5525.

[112]  Elan Stopnitzky,et al.  Bounds on self-interacting fermion dark matter from observations of old neutron stars , 2013, 1310.3509.

[113]  M. Reno,et al.  On the capture of dark matter by neutron stars , 2012, 1201.2400.

[114]  Bernd Freytag,et al.  WEATHER ON THE NEAREST BROWN DWARFS: RESOLVED SIMULTANEOUS MULTI-WAVELENGTH VARIABILITY MONITORING OF WISE J104915.57−531906.1AB , 2013, 1310.5144.

[115]  A. Nelson,et al.  Dark Matter Thermalization in Neutron Stars , 2013, 1309.1721.

[116]  T. Slatyer,et al.  Wino dark matter under siege , 2013, 1307.4082.

[117]  A. Melatos,et al.  Realistic neutron star constraints on bosonic asymmetric dark matter , 2013, 1301.6811.

[118]  J. Bramante,et al.  Constraints on bosonic dark matter from observation of old neutron stars , 2013, 1301.0036.

[119]  M. Tewes,et al.  The CORALIE survey for southern extrasolar planets - XVII. New and updated long period and massive planets , 2012, 1211.6444.

[120]  E. Kokubo,et al.  A DOUBLE PLANETARY SYSTEM AROUND THE EVOLVED INTERMEDIATE-MASS STAR HD 4732 , 2012, 1210.6798.

[121]  I. Reid,et al.  VERTICAL ATMOSPHERIC STRUCTURE IN A VARIABLE BROWN DWARF: PRESSURE-DEPENDENT PHASE SHIFTS IN SIMULTANEOUS HUBBLE SPACE TELESCOPE–SPITZER LIGHT CURVES , 2012, 1210.6654.

[122]  C. Baltay,et al.  Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .

[123]  P. Sorensen,et al.  First direct detection limits on sub-GeV dark matter from XENON10. , 2012, Physical review letters.

[124]  P. Shapiro,et al.  Observing supermassive dark stars with James Webb Space Telescope , 2012 .

[125]  G. Meynet,et al.  Main sequence stars with asymmetric dark matter. , 2012, Physical review letters.

[126]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[127]  K. Zurek,et al.  Constraints on Scalar Asymmetric Dark Matter from Black Hole Formation in Neutron Stars , 2011, 1103.5472.

[128]  Andrew P. Hearin,et al.  Asymmetric dark matter may alter the evolution of very low-mass stars and brown dwarfs , 2011, 1110.5919.

[129]  D. Nagai,et al.  Halo Contraction Effect in Hydrodynamic Simulations of Galaxy Formation , 2011, 1108.5736.

[130]  C. Winant,et al.  Search for light dark matter in XENON10 data. , 2011, Physical review letters.

[131]  P. Tinyakov,et al.  Excluding light asymmetric bosonic dark matter. , 2011, Physical review letters.

[132]  D. Hooper,et al.  Dark Matter And The Habitability of Planets , 2011, 1103.5086.

[133]  P. Tinyakov,et al.  Constraining asymmetric dark matter through observations of compact stars , 2010, 1012.2039.

[134]  C. Moutou,et al.  The HARPS search for southern extrasolar planets - XXIII. 8 planetary companions to low-activity solar-type stars , 2010, 1008.4600.

[135]  R. Doyon,et al.  The ultracool-field dwarf luminosity-function and space de nsity from the Canada-France Brown Dwarf Survey ? , 2010, 1008.2301.

[136]  J. Casanellas,et al.  Towards the use of asteroseismology to investigate the nature of dark matter , 2010, 1008.0646.

[137]  M. Fairbairn,et al.  Neutron stars as dark matter probes , 2010, 1004.0629.

[138]  P. Tinyakov,et al.  Can neutron stars constrain dark matter , 2010, 1004.0586.

[139]  Debra A. Fischer,et al.  A Bayesian Periodogram Finds Evidence for Three Planets in 47 Ursae Majoris , 2010, 1003.5549.

[140]  T. Broadhurst,et al.  FINDING HIGH-REDSHIFT DARK STARS WITH THE JAMES WEBB SPACE TELESCOPE , 2010, 1002.3368.

[141]  P. Bodenheimer,et al.  SUPERMASSIVE DARK STARS: DETECTABLE IN JWST , 2010, 1002.2233.

[142]  D. Hooper,et al.  Inelastic dark matter as an efficient fuel for compact stars , 2010, 1002.0005.

[143]  M. Fairbairn,et al.  Capture of inelastic dark matter in white dwarves , 2010, 1001.2737.

[144]  J. Valenti,et al.  TWO EXOPLANETS DISCOVERED AT KECK OBSERVATORY , 2009, 0908.1612.

[145]  J. Valenti,et al.  FIVE PLANETS AND AN INDEPENDENT CONFIRMATION OF HD 196885Ab FROM LICK OBSERVATORY , 2009, 0908.1596.

[146]  G. Nowak,et al.  SUBSTELLAR-MASS COMPANIONS TO THE K-DWARF BD+14 4559 AND THE K-GIANTS HD 240210 AND BD+20 2457 , 2009, 0906.1804.

[147]  A. Peter Dark matter in the Solar System. I. The distribution function of WIMPs at the Earth from solar capture , 2009, 0902.1344.

[148]  A. Peter Dark matter in the Solar System. III. The distribution function of WIMPs at the Earth from gravitational capture , 2009, 0902.1348.

[149]  John Asher Johnson,et al.  TEN NEW AND UPDATED MULTIPLANET SYSTEMS AND A SURVEY OF EXOPLANETARY SYSTEMS , 2008, 0812.1582.

[150]  P. Fox,et al.  Leptophilic dark matter , 2008, 0811.0399.

[151]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[152]  S. Adler Planet-bound dark matter and the internal heat of Uranus, Neptune, and hot-Jupiter exoplanets , 2008, 0808.2823.

[153]  K. Freese,et al.  DARK MATTER DENSITIES DURING THE FORMATION OF THE FIRST STARS AND IN DARK STARS , 2008, 0805.3540.

[154]  J. Jasensky,et al.  Towards Closing the Window on Strongly Interacting Dark Matter : Far-Reaching Constraints from Earth ’ s Heat Flow , 2009 .

[155]  P. Scott,et al.  Erratum: Dark stars at the Galactic Centre – the main sequence , 2008, 0809.1871.

[156]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[157]  R. P. Butler,et al.  A JUPITER-LIKE PLANET ORBITING THE NEARBY M DWARF GJ 832 , 2008, 0809.0172.

[158]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[159]  G. Bertone,et al.  Dark matter annihilations in Population III stars , 2008, 0806.2681.

[160]  P. Bodenheimer,et al.  Stellar Structure of Dark Stars: A First Phase of Stellar Evolution Resulting from Dark Matter Annihilation , 2008, 0806.0617.

[161]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[162]  A. Aguirre,et al.  Dark matter capture in the first stars: a power source and limit on stellar mass , 2008, 0802.1724.

[163]  F. Iocco Dark Matter Capture and Annihilation on the First Stars: Preliminary Estimates , 2008, 0802.0941.

[164]  P. Scott,et al.  The zero age main sequence of WIMP burners , 2007, 0710.3396.

[165]  Gianfranco Bertone,et al.  Compact stars as dark matter probes , 2007, 0709.1485.

[166]  C. Kouvaris WIMP annihilation and cooling of neutron stars , 2007, 0708.2362.

[167]  K. Freese,et al.  Dark matter and the first stars: a new phase of stellar evolution. , 2007, Physical review letters.

[168]  M. Camenzind Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black Holes , 2016 .

[169]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[170]  I. Moskalenko,et al.  Dark Matter Burners , 2007, astro-ph/0702654.

[171]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[172]  S. Baliunas,et al.  The Extrasolar Planet ϵ Eridani b: Orbit and Mass , 2006, astro-ph/0610247.

[173]  R. P. Butler,et al.  A Long‐Period Jupiter‐Mass Planet Orbiting the Nearby M Dwarf GJ 849 , 2006, astro-ph/0610179.

[174]  Stefano Casertano,et al.  Transiting extrasolar planetary candidates in the Galactic bulge , 2006, Nature.

[175]  W. D. Cochran,et al.  Confirmation of the planet hypothesis for the long-period radial velocity variations of β Geminorum , 2006, astro-ph/0606517.

[176]  J. Anderson,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006, astro-ph/0603276.

[177]  Jason T. Wright,et al.  Five New Extrasolar Planets , 2005 .

[178]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets. XII. Orbital solutions for 16 extra-solar planets discovered with CORALIE , 2003, astro-ph/0310316.

[179]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[180]  R. P. Butler,et al.  A Planet in a Circular Orbit with a 6 Year Period , 2003, astro-ph/0307066.

[181]  J. Beuzit,et al.  The ELODIE survey for northern extra-solar planets - II. A Jovian planet on a long-period orbit around GJ 777 A , 2003, astro-ph/0306586.

[182]  B. Mcarthur,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 11/12/01 A PLANETARY COMPANION TO γ CEPHEI A , 2003 .

[183]  R. Paul Butler,et al.  Seven New Keck Planets Orbiting G and K Dwarfs , 2003 .

[184]  B. Santiago,et al.  Extinction within 10° of the Galactic centre using 2MASS , 2002 .

[185]  Berkeley,et al.  A Planet at 5 AU around 55 Cancri , 2002, astro-ph/0207294.

[186]  M. Gillan,et al.  The ab initio simulation of the Earth's core , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[187]  B. Santiago,et al.  Low-extinction windows in the inner Galactic Bulge , 2001, astro-ph/0110658.

[188]  R. P. Butler,et al.  Ten Low-Mass Companions from the Keck Precision Velocity Survey , 2001, astro-ph/0110378.

[189]  P. Madau,et al.  Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos , 2001, astro-ph/0108224.

[190]  John Goodier,et al.  Encyclopedia of the Solar System , 2000 .

[191]  R. Paul Butler,et al.  Evidence for Multiple Companions to υ Andromedae , 1999 .

[192]  R. Paul Butler,et al.  Evidence for Multiple Companions to upsilo Andromedae , 1999 .

[193]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[194]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995, astro-ph/9504041.

[195]  H. Murayama,et al.  Can the Strongly Interacting Dark Matter Be a Heating Source of Jupiter , 1992 .

[196]  Gould,et al.  Opening the window on strongly interacting dark matter. , 1990, Physical review. D, Particles and fields.

[197]  Andrew Gould,et al.  Evaporation of WIMPs with arbitrary cross sections , 1990 .

[198]  A. Gould,et al.  Neuton stars: Graveyard of charged dark matter , 1990 .

[199]  Goldman,et al.  Weakly interacting massive particles and neutron stars. , 1989, Physical review. D, Particles and fields.

[200]  P. Salati,et al.  Dark matter and the suppression of stellar core convection , 1989 .

[201]  J. Silk,et al.  A Stellar Probe of Dark Matter Annihilation in Galactic Nuclei , 1989 .

[202]  D. Seckel,et al.  Cosmic asymmetry, neutrinos and the sun☆ , 1987 .

[203]  R. Hide The giant planets. , 1982 .

[204]  Yasuhiro Saito,et al.  Erratum , 1978, Nature.