Decoding the Interdependence of Multiparametric Magnetic Resonance Imaging to Reveal Patient Subgroups Correlated with Survivals12

[1]  Ruijiang Li,et al.  Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant Chemotherapy. , 2018, Radiology.

[2]  G. Reifenberger,et al.  European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. , 2017, The Lancet. Oncology.

[3]  S. Price,et al.  Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with Glioblastoma. , 2017, Radiology.

[4]  Ruijiang Li,et al.  Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma , 2017, European Radiology.

[5]  D. Ikeda,et al.  Unsupervised Clustering of Quantitative Image Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways , 2017, Clinical Cancer Research.

[6]  Ruijiang Li,et al.  Intratumor partitioning and texture analysis of dynamic contrast‐enhanced (DCE)‐MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy , 2016, Journal of magnetic resonance imaging : JMRI.

[7]  Guillaume A. Rousselet,et al.  A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula , 2016, bioRxiv.

[8]  M. McLean,et al.  Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas , 2015, Journal of magnetic resonance imaging : JMRI.

[9]  Teresa Wu,et al.  Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma , 2015, PloS one.

[10]  Malika Charrad,et al.  NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set , 2014 .

[11]  B. Rosen,et al.  Advanced magnetic resonance imaging of the physical processes in human glioblastoma. , 2014, Cancer research.

[12]  R. Gillies,et al.  Quantitative imaging in cancer evolution and ecology. , 2013, Radiology.

[13]  M. Junttila,et al.  Influence of tumour micro-environment heterogeneity on therapeutic response , 2013, Nature.

[14]  Patrick Y Wen,et al.  Application of Novel Response/Progression Measures for Surgically Delivered Therapies for Gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group , 2012, Neurosurgery.

[15]  J. Gillard,et al.  Correlation of MR Relative Cerebral Blood Volume Measurements with Cellular Density and Proliferation in High-Grade Gliomas: An Image-Guided Biopsy Study , 2011, American Journal of Neuroradiology.

[16]  Susan M. Chang,et al.  Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[18]  R. Kreis Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts , 2004, NMR in biomedicine.

[19]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[20]  R. Gillies,et al.  Causes and effects of heterogeneous perfusion in tumors. , 1999, Neoplasia.

[21]  R. Nelsen An Introduction to Copulas , 1998 .

[22]  T Nakada,et al.  Localized proton spectroscopy of focal brain pathology in humans: Significant effects of edema on spin–spin relaxation time , 1994, Magnetic resonance in medicine.

[23]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..