A literature survey of benchmark functions for global optimisation problems

Test functions are important to validate and compare the performance of optimisation algorithms. There have been many test or benchmark functions reported in the literature; however, there is no standard list or set of benchmark functions. Ideally, test functions should have diverse properties to be truly useful to test new algorithms in an unbiased way. For this purpose, we have reviewed and compiled a rich set of 175 benchmark functions for unconstrained optimisation problems with diverse properties in terms of modality, separability, and valley landscape. This is by far the most complete set of functions so far in the literature, and it can be expected that this complete set of functions can be used for validation of new optimisation in the future.

[1]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[2]  M. J. D. Powell,et al.  An Iterative Method for Finding Stationary Values of a Function of Several Variables , 1962, Comput. J..

[3]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[4]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[5]  J. Miller Numerical Analysis , 1966, Nature.

[6]  R. Jennrich,et al.  Application of Stepwise Regression to Non-Linear Estimation , 1968 .

[7]  R. Hesse Recent Advances in Optimization Techniques , 1968 .

[8]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[9]  A. V. Levy,et al.  Study on a supermemory gradient method for the minimization of functions , 1969 .

[10]  Yonathan Bard,et al.  Comparison of Gradient Methods for the Solution of Nonlinear Parameter Estimation Problems , 1970 .

[11]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[12]  J. F. Price,et al.  On descent from local minima , 1971 .

[13]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[14]  F. H. Branin Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .

[15]  S. Vajda,et al.  Numerical Methods for Non-Linear Optimization , 1973 .

[16]  J. K. Hartman Some experiments in global optimization , 1973 .

[17]  Jasna Opacic A Heuristic Method for Finding Most Extrema of a Nonlinear Functional , 1973, IEEE Trans. Syst. Man Cybern..

[18]  George A. Bekey,et al.  A Comparative Evaluation of Two Global Search Algorithms , 1974, IEEE Trans. Syst. Man Cybern..

[19]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[20]  Wyn L. Price,et al.  A Controlled Random Search Procedure for Global Optimisation , 1977, Comput. J..

[21]  M. Vidyasagar,et al.  An Algorithm for $l_1 $-Norm Minimization with Application to Nonlinear $l_1 $-Approximation , 1979 .

[22]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[23]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[24]  A. Griewank Generalized descent for global optimization , 1981 .

[25]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[26]  N. D. Villiers,et al.  A Continuation Method for Nonlinear Regression , 1981 .

[27]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[28]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[29]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[30]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[31]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[32]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[33]  L. Dixon,et al.  Truncated Newton method for sparse unconstrained optimization using automatic differentiation , 1989 .

[34]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[35]  Patrick Henry Winston,et al.  Artificial intelligence (3rd ed.) , 1992 .

[36]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[37]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[38]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[39]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[40]  Luca Maria Gambardella,et al.  Results of the first international contest on evolutionary optimisation (1st ICEO) , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[41]  Jasbir S. Arora,et al.  TWO ALGORITHMS FOR GLOBAL OPTIMIZATION OF GENERAL NLP PROBLEMS , 1996 .

[42]  T. Csendes,et al.  A review of subdivision direction selection in interval methods for global optimization , 1997 .

[43]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[44]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[45]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[46]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[47]  Pierre Courrieu,et al.  The Hyperbell Algorithm for Global Optimization: A Random Walk Using Cauchy Densities , 1997, J. Glob. Optim..

[48]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[49]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[50]  Robert G. Reynolds,et al.  CAEP: An Evolution-Based Tool for Real-Valued Function Optimization Using Cultural Algorithms , 1998, Int. J. Artif. Intell. Tools.

[51]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[53]  Dr.-Ing. Hartmut Pohlheim Genetic and Evolutionary Algorithm Toolbox for Matlab , 2000 .

[54]  Yue Chen Computer simulation of electron positron annihilation processes , 2003 .

[55]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[56]  K. C. Mundim,et al.  Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing , 2004 .

[57]  Z. K. Silagadze FINDING TWO-DIMENSIONAL PEAKS , 2004 .

[58]  N. Garc'ia-Pedrajas,et al.  CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features , 2005, J. Artif. Intell. Res..

[59]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[60]  Safieddin Safavi-Naeini,et al.  A hybrid evolutionary programming method for circuit optimization , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[62]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[63]  Ernesto P. Adorio,et al.  MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization , 2005 .

[64]  Sudhanshu K. Mishra,et al.  Performance of Repulsive Particle Swarm Method in Global Optimization of Some Important Test Functions: A Fortran Program , 2006 .

[65]  Sudhanshu K. Mishra,et al.  Performance of the Barter, the Differential Evolution and the Simulated Annealing Methods of Global Optimization on Some New and Some Old Test Functions , 2006 .

[66]  Sudhanshu K. Mishra Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-Modal Benchmark Functions , 2006 .

[67]  SK Mishra,et al.  Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions , 2006 .

[68]  Sudhanshu K. Mishra,et al.  Some New Test Functions for Global Optimization and Performance of Repulsive Particle Swarm Method , 2006 .

[69]  Anyong Qing Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[70]  S. Marcus,et al.  Model-Based Randomized Methods for Global Optimization , 2006 .

[71]  Sudhanshu K. Mishra Global Optimization By Particle Swarm Method: A Fortran Program , 2006 .

[72]  Sudhanshu K. Mishra Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization , 2006 .

[73]  Shahryar Rahnamayan,et al.  Opposition-Based Differential Evolution (ODE) with Variable Jumping Rate , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[74]  Shahryar Rahnamayan,et al.  A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..

[75]  Neculai Andrei,et al.  An Unconstrained Optimization Test Functions Collection , 2008 .

[76]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[77]  Jani Rönkkönen ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .

[78]  José Elias Laier,et al.  A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification , 2009, Adv. Eng. Softw..

[79]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[80]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[81]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[82]  Xin-She Yang Test Problems in Optimization , 2010, 1008.0549.