暂无分享,去创建一个
[1] H. H. Rosenbrock,et al. An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..
[2] M. J. D. Powell,et al. An Iterative Method for Finding Stationary Values of a Function of Several Variables , 1962, Comput. J..
[3] Roger Fletcher,et al. A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..
[4] M. J. D. Powell,et al. An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..
[5] J. Miller. Numerical Analysis , 1966, Nature.
[6] R. Jennrich,et al. Application of Stepwise Regression to Non-Linear Estimation , 1968 .
[7] R. Hesse. Recent Advances in Optimization Techniques , 1968 .
[8] K. Steiglitz,et al. Adaptive step size random search , 1968 .
[9] A. V. Levy,et al. Study on a supermemory gradient method for the minimization of functions , 1969 .
[10] Yonathan Bard,et al. Comparison of Gradient Methods for the Solution of Nonlinear Parameter Estimation Problems , 1970 .
[11] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[12] J. F. Price,et al. On descent from local minima , 1971 .
[13] David Mautner Himmelblau,et al. Applied Nonlinear Programming , 1972 .
[14] F. H. Branin. Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .
[15] S. Vajda,et al. Numerical Methods for Non-Linear Optimization , 1973 .
[16] J. K. Hartman. Some experiments in global optimization , 1973 .
[17] Jasna Opacic. A Heuristic Method for Finding Most Extrema of a Nonlinear Functional , 1973, IEEE Trans. Syst. Man Cybern..
[18] George A. Bekey,et al. A Comparative Evaluation of Two Global Search Algorithms , 1974, IEEE Trans. Syst. Man Cybern..
[19] Nils J. Nilsson,et al. Artificial Intelligence , 1974, IFIP Congress.
[20] Wyn L. Price,et al. A Controlled Random Search Procedure for Global Optimisation , 1977, Comput. J..
[21] M. Vidyasagar,et al. An Algorithm for $l_1 $-Norm Minimization with Application to Nonlinear $l_1 $-Approximation , 1979 .
[22] H. Zimmermann. Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .
[23] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[24] A. Griewank. Generalized descent for global optimization , 1981 .
[25] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[26] N. D. Villiers,et al. A Continuation Method for Nonlinear Regression , 1981 .
[27] M. E. Johnson,et al. Generalized simulated annealing for function optimization , 1986 .
[28] Sandro Ridella,et al. Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.
[29] T. L. Wayburn,et al. Homotopy continuation methods for computer-aided process design☆ , 1987 .
[30] D. Ackley. A connectionist machine for genetic hillclimbing , 1987 .
[31] Rajarshi Das,et al. A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.
[32] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[33] L. Dixon,et al. Truncated Newton method for sparse unconstrained optimization using automatic differentiation , 1989 .
[34] Guoliang Xue,et al. The MINPACK-2 test problem collection , 1992 .
[35] Patrick Henry Winston,et al. Artificial intelligence (3rd ed.) , 1992 .
[36] L. Darrell Whitley,et al. Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.
[37] Thomas Bäck,et al. An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.
[38] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[39] R. Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.
[40] Luca Maria Gambardella,et al. Results of the first international contest on evolutionary optimisation (1st ICEO) , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[41] Jasbir S. Arora,et al. TWO ALGORITHMS FOR GLOBAL OPTIMIZATION OF GENERAL NLP PROBLEMS , 1996 .
[42] T. Csendes,et al. A review of subdivision direction selection in interval methods for global optimization , 1997 .
[43] L. Darrell Whitley,et al. Evaluating Evolutionary Algorithms , 1996, Artif. Intell..
[44] Xin Yao,et al. Fast Evolutionary Programming , 1996, Evolutionary Programming.
[45] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[46] R. Storn,et al. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .
[47] Pierre Courrieu,et al. The Hyperbell Algorithm for Global Optimization: A Random Walk Using Cauchy Densities , 1997, J. Glob. Optim..
[48] J D Pinter,et al. Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .
[49] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[50] Robert G. Reynolds,et al. CAEP: An Evolution-Based Tool for Real-Valued Function Optimization Using Cultural Algorithms , 1998, Int. J. Artif. Intell. Tools.
[51] M. Clerc,et al. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[52] C. Floudas. Handbook of Test Problems in Local and Global Optimization , 1999 .
[53] Dr.-Ing. Hartmut Pohlheim. Genetic and Evolutionary Algorithm Toolbox for Matlab , 2000 .
[54] Yue Chen. Computer simulation of electron positron annihilation processes , 2003 .
[55] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[56] K. C. Mundim,et al. Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing , 2004 .
[57] Z. K. Silagadze. FINDING TWO-DIMENSIONAL PEAKS , 2004 .
[58] N. Garc'ia-Pedrajas,et al. CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features , 2005, J. Artif. Intell. Res..
[59] R. Storn,et al. Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .
[60] Safieddin Safavi-Naeini,et al. A hybrid evolutionary programming method for circuit optimization , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.
[61] Jing J. Liang,et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .
[62] Zelda B. Zabinsky,et al. A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..
[63] Ernesto P. Adorio,et al. MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization , 2005 .
[64] Sudhanshu K. Mishra,et al. Performance of Repulsive Particle Swarm Method in Global Optimization of Some Important Test Functions: A Fortran Program , 2006 .
[65] Sudhanshu K. Mishra,et al. Performance of the Barter, the Differential Evolution and the Simulated Annealing Methods of Global Optimization on Some New and Some Old Test Functions , 2006 .
[66] Sudhanshu K. Mishra. Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-Modal Benchmark Functions , 2006 .
[67] SK Mishra,et al. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions , 2006 .
[68] Sudhanshu K. Mishra,et al. Some New Test Functions for Global Optimization and Performance of Repulsive Particle Swarm Method , 2006 .
[69] Anyong Qing. Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems , 2006, IEEE Transactions on Geoscience and Remote Sensing.
[70] S. Marcus,et al. Model-Based Randomized Methods for Global Optimization , 2006 .
[71] Sudhanshu K. Mishra. Global Optimization By Particle Swarm Method: A Fortran Program , 2006 .
[72] Sudhanshu K. Mishra. Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization , 2006 .
[73] Shahryar Rahnamayan,et al. Opposition-Based Differential Evolution (ODE) with Variable Jumping Rate , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.
[74] Shahryar Rahnamayan,et al. A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..
[75] Neculai Andrei,et al. An Unconstrained Optimization Test Functions Collection , 2008 .
[76] Ponnuthurai Nagaratnam Suganthan,et al. Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .
[77] Jani Rönkkönen. ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .
[78] José Elias Laier,et al. A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification , 2009, Adv. Eng. Softw..
[79] Xiaodong Li,et al. Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .
[80] Singiresu S. Rao. Engineering Optimization : Theory and Practice , 2010 .
[81] Xin-She Yang,et al. Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..
[82] Xin-She Yang. Test Problems in Optimization , 2010, 1008.0549.