A Linear-Time Approximation Scheme for Minimum Weight Triangulation of Convex Polygons

Abstract. A linear-time heuristic for minimum weight triangulation of convex polygons is presented. This heuristic produces a triangulation of length within a factor 1 + ε from the optimum, where ε is an arbitrarily small positive constant. This is the first subcubic algorithm that guarantees such an approximation factor, and it has interesting applications.

[1]  Warren D. Smith Studies in computational geometry motivated by mesh generation , 1989 .

[2]  Peter Gilbert New Results on Planar Triangulations. , 1979 .

[3]  Christos Levcopoulos,et al.  The greedy triangulation can be computed from the Delaunay triangulation in linear time , 1999, Comput. Geom..

[4]  Andrzej Lingas,et al.  Fast Algorithms for Greedy Triangulation , 1990, SWAT.

[5]  Christos Levcopoulos,et al.  A Fast Heuristic for Approximating the Minimum Weight Triangulation (Extended Abstract) , 1996, SWAT.

[6]  J. Mark Keil,et al.  Computing a Subgraph of the Minimum Weight Triangulation , 1994, Comput. Geom..

[7]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[8]  Jörg-Rüdiger Sack,et al.  Heuristics for Optimum Binary Search Trees and Minimum Weight Triangulation Problems , 1989, Theor. Comput. Sci..

[9]  Christos Levcopoulos,et al.  A near-optimal heuristic for minimum weight triangulation of convex polygons , 1997, SODA '97.

[10]  David A. Plaisted,et al.  A Heuristic Triangulation Algorithm , 1987, J. Algorithms.

[11]  Matthew Dickerson,et al.  A (usually?) connected subgraph of the minimum weight triangulation , 1996, SCG '96.

[12]  L. Chew Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .

[13]  Jack Snoeyink,et al.  On computing edges that are in all minimum-weight triangulations , 1996, SCG '96.

[14]  Andrzej Lingas,et al.  A Note on Generalizations of Chew's Algorithm for the Voronoi Diagram of a Convex Polygon , 1993, CCCG.

[15]  Vitit Kantabutra A Linear-Time Near-Optimum-Length Triangulation Algorithm for Convex Polygons , 1994, J. Comput. Syst. Sci..

[16]  Christos Levcopoulos,et al.  Quasi-greedy triangulations approximating the minimum weight triangulation , 1996, SODA '96.