On some techniques for approximating boundary conditions in the finite element method

We discuss the stabilization of finite element methods in which essential boundary conditions are approximated by Babuska's method of Lagrange multipliers and we show that there is a close connection with this technique and a classical method by Nitsche.

[1]  Franco Brezzi,et al.  Stabilization of Galerkin Methods and Applications to Domain Decomposition , 1992, 25th Anniversary of INRIA.

[2]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[3]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[4]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[5]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[6]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[7]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[8]  Charbel Farhat,et al.  Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations , 1992 .

[9]  Juhani Pitkäranta,et al.  The finite element method with Lagrange multipliers for domains with corners , 1981 .

[10]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[11]  M. R. Dorr,et al.  A domain decomposition preconditioner with reduced rank interdomain coupling , 1991 .

[12]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[13]  Nuno Rebelo,et al.  On the development of a general purpose finite element program for analysis of forming processes , 1988 .

[14]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[15]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[16]  Juhani Pitkäranta,et al.  Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .

[17]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[18]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .