Famidas: A Mixed Frequency Factor Model with MIDAS Structure

In this paper a dynamic factor model with mixed frequency is proposed (FaMIDAS), where the past observations of high frequency indicators are used following the MIDAS approach. This structure is able to represent with richer dynamics the information content of the economic indicators and produces smoothed factors and forecasts. In addition, the Kalman filter is applied, which is particularly suited for dealing with unbalanced data set and revisions in the preliminary data. In the empirical application for the Italian quarterly GDP the short-term forecasting performance is evaluated against other mixed frequency models in a pseudo-real time experiment, also allowing for pooled forecast from factor models.

[1]  Filippo Altissimo,et al.  New Eurocoin: Tracking Economic Growth in Real Time , 2006, The Review of Economics and Statistics.

[2]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[3]  Domenico Giannone,et al.  Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases , 2005 .

[4]  Andrea Zaghini,et al.  Monetary Policy Shocks in the Euro Area and Global Liquidity Spillovers , 2007, SSRN Electronic Journal.

[5]  Marta Bańbura,et al.  A Look into the Factor Model Black Box: Publication Lags and the Role of Hard and Soft Data in Forecasting GDP , 2007, SSRN Electronic Journal.

[6]  Massimiliano Marcellino,et al.  Some Consequences of Temporal Aggregation in Empirical Analysis , 1999 .

[7]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[8]  Family Succession and Firm Performance: Evidence from Italian Family Firms , 2008 .

[9]  Francesca Lotti,et al.  Innovation and Productivity in SMEs - Empirical Evidence for Italy , 2009 .

[10]  F. Columba,et al.  Monetary policy effects: new evidence from the Italian flow-of-funds , 2008 .

[11]  Paolo Piselli,et al.  Emerging Markets Spreads and Global Financial Conditions , 2007 .

[12]  M. Shum,et al.  Do Mergers Improve Information? Evidence from the Loan Market , 2004 .

[13]  G. Micucci,et al.  Dynamic Macroeconomic Effects of Public Capital: Evidence from Regional Italian Data , 2009 .

[14]  A. Nobili,et al.  Assessing excess liquidity in the euro area: the role of sectoral distribution of money , 2011 .

[15]  Sabrina Lucia Di Addario,et al.  Entrepreneurship and Market Size: The Case of Young College Graduates in Italy , 2009, SSRN Electronic Journal.

[16]  Paolo Emilio Mistrulli Assessing Financial Contagion in the Interbank Market: Maximum Entropy Versus Observed Interbank Lending Patterns , 2011 .

[17]  L. Sessa,et al.  Credit and Banking in a DSGE Model of the Euro Area , 2010 .

[18]  Allan Timmermann,et al.  Optimal Forecast Combinations Under General Loss Functions and Forecast Error Distributions , 2002 .

[19]  M. Marcellino Pooling‐Based Data Interpolation and Backdating , 2005 .

[20]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[21]  Siem Jan Koopman,et al.  Fast Filtering and Smoothing for Multivariate State Space Models , 2000 .

[22]  Michael P. Clements,et al.  Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions , 2010 .

[23]  M. Marcellino,et al.  EUI Working Papers , 2008 .

[24]  Stefan Mittnik,et al.  Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data , 2004, SSRN Electronic Journal.

[25]  Clelia Rossi-Arnaud,et al.  Memory for Prices and the Euro Cash Changeover: An Analysis for Cinema Prices in Italy , 2007 .

[26]  Andrea Nobili,et al.  The Transmission of US Monetary Policy to the Euro Area , 2010 .

[27]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[28]  Marcello Pagnini,et al.  Distance, Bank Heterogeneity and Entry in Local Banking Markets , 2008 .

[29]  A. Timmermann Forecast Combinations , 2005 .

[30]  Stefano Nobili,et al.  Explaining and Forecasting Bond Risk Premiums , 2010 .

[31]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[32]  F. Lippi,et al.  Technological change and the households' demand for currency , 2009 .

[33]  Libero Monteforte,et al.  The General Equilibrium Effects of Fiscal Policy: Estimates for the Euro Area , 2007 .

[34]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[35]  Filippo Moauro,et al.  Temporal Disaggregation Using Multivariate Structural Time Series Models , 2005 .

[36]  Fabrizio Balassone,et al.  Cyclical asymmetry in fiscal variables in the EU , 2010 .

[37]  Valter Di Giacinto,et al.  On vector autoregressive modeling in space and time , 2010, J. Geogr. Syst..

[38]  Jurgen A. Doornik,et al.  Ox: an Object-oriented Matrix Programming Language , 1996 .

[39]  Silvia Magri,et al.  The financing of small innovative firms: the Italian case , 2007 .

[40]  M. Pisani,et al.  Risk-Adjusted Forecasts of Oil Prices , 2009 .

[41]  Risk Aversion, Wealth and Background Risk , 2008 .

[42]  Marcello Pericoli,et al.  The CAPM and the Risk Appetite Index: Theoretical Differences, Empirical Similarities, and Implementation Problems , 2009 .

[43]  Leonardo Gambacorta,et al.  Bank Profitability and the Business Cycle , 2006 .

[44]  Stefano Siviero,et al.  Monetary Policy in a Monetary Union: What Role for Regional Information? , 2008 .

[45]  A. Calza,et al.  NONLINEARITIES IN THE DYNAMICS OF THE EURO AREA DEMAND FOR M1 , 2008, Macroeconomic Dynamics.

[46]  Katja Drechsel,et al.  Flow on Conjunctural Information and Forecast of Euro Area Economic Activity , 2008 .

[47]  Eleonora Patacchini,et al.  Wages and the City - Evidence from Italy , 2007 .

[48]  Silvia Magri Debt Maturity Choice of Nonpublic Italian Firms , 2010 .

[49]  Stefano Federico,et al.  Outsourcing versus integration at home or abroad and firm heterogeneity , 2010 .

[50]  Eric Ghysels,et al.  Forecasting Professional Forecasters , 2006 .

[51]  Antonio Accetturo,et al.  Agglomeration and Growth: The Effects of Commuting Costs , 2008 .

[52]  Leandro D'Aurizio,et al.  Exploring Agent-Based Methods for the Analysis of Payment Systems: A Crisis Model for StarLogo TNG , 2008, J. Artif. Soc. Soc. Simul..

[53]  Tommaso Proietti,et al.  Dynamic factor analysis with non‐linear temporal aggregation constraints , 2006 .

[54]  Matteo Iacoviello,et al.  Housing Market Spillovers: Evidence from an Estimated DSGE Model , 2008 .

[55]  Stefano Federico,et al.  Outward FDI and Local Employment Growth in Italy , 2007 .

[56]  R. Mariano,et al.  A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series , 2002 .

[57]  Claudia Biancotti,et al.  Measurement Error in the Bank of Italy's Survey of Household Income and Wealth , 2008 .

[58]  Maximo Camacho,et al.  Introducing the Euro-Sting: Short-Term Indicator of Euro Area Growth , 2009 .

[59]  A. Brandolini,et al.  On Analysing the World Distribution of Income , 2009 .

[60]  Andrew Harvey,et al.  Testing for Trend , 2007 .

[61]  J. Stock,et al.  A Probability Model of the Coincident Economic Indicators , 1988 .

[62]  Silvia Fabiani,et al.  What's Behind 'Inflation Perceptions'? A Survey-Based Analysis of Italian Consumers , 2008 .

[63]  C. Nicoletti,et al.  The (Mis)Specification of Discrete Duration Models with Unobserved Heterogeneity: A Monte Carlo Study , 2009 .

[64]  Antonio Di Cesare,et al.  An Analysis of the Determinants of Credit Default Swap Spread Changes Before and During the Subprime Financial Turmoil , 2010 .

[65]  Massimo Marinacci,et al.  PORTFOLIO SELECTION WITH MONOTONE MEAN‐VARIANCE PREFERENCES , 2009 .

[66]  Sabrina Lucia Di Addario Job search in thick markets , 2011 .

[67]  Alessandro Prati,et al.  Uncertainty and Currency Crises: Evidence from Survey Data , 2010 .

[68]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[69]  M. Marcellino,et al.  Forecast Pooling for European Macroeconomic Variables , 2004 .

[70]  Leonardo Gambacorta,et al.  Bank Profitability and Taxation , 2007 .

[71]  Michael P. Clements,et al.  Macroeconomic Forecasting With Mixed-Frequency Data , 2008 .

[72]  Massimiliano Marcellino,et al.  Survey Data as Coincident or Leading Indicators , 2009 .

[73]  Libero Monteforte,et al.  Real Time Forecasts of Inflation: The Role of Financial Variables , 2008 .

[74]  Eliana Viviano,et al.  Entry Regulations and Labor Market Outcomes: Evidence from the Italian Retail Trade Sector , 2006 .

[75]  G. de Blasio,et al.  Historical Traditions of Civicness and Local Economic Development , 2009 .

[76]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[77]  Andrea Nobili,et al.  Futures Contract Rates as Monetary Policy Forecasts , 2008, SSRN Electronic Journal.

[78]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[79]  Massimiliano Marcellino,et al.  Factor Midas for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP , 2008 .

[80]  Robert B. Litterman A random walk, Markov model for the distribution of time series , 1983 .

[81]  Giuseppe Cappelletti,et al.  A Note on Rationalizability and Restrictions on Belief , 2010 .

[82]  Riccardo Cristadoro,et al.  Short-Term Forecasting of GDP Using Large Monthly Datasets – A Pseudo Real-Time Forecast Evaluation Exercise , 2008 .

[83]  Matteo Bugamelli,et al.  Produttività e concorrenza estera , 2006 .

[84]  M. Affinito,et al.  What are Borders Made of? An Analysis of Barriers to European Banking Integration , 2008 .

[85]  Jason Norris,et al.  Real-time measurement , 2008 .

[86]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Midas Touch: Mixed Data Sampling Regression Models the Midas Touch: Mixed Data Sampling Regression Models* , 2022 .

[87]  Andrew Harvey,et al.  Estimating the underlying change in unemployment in the UK , 2000 .

[88]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[89]  Sandro Momigliano,et al.  The impact of government budgets on prices: Evidence from macroeconometric models , 2008 .

[90]  Andrea Zaghini,et al.  Gradualism, Transparency and the Improved Operational Framework: A Look at the Overnight Volatility Transmission , 2009 .

[91]  P. Angelini,et al.  On the Evolution of Firm Size Distributions , 2008 .

[92]  Marcello Pagnini,et al.  Openness to Trade and Industry Cost Dispersion: Evidence from a Panel of Italian Firms , 2008 .

[93]  Andrew Harvey,et al.  Estimating Missing Observations in Economic Time Series , 1984 .

[94]  Christian Schumacher,et al.  Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP , 2009, SSRN Electronic Journal.

[95]  David Veredas,et al.  Temporal Aggregation of Univariate and Multivariate Time Series Models: A Survey , 2008 .

[96]  Andrea Brandolini,et al.  Asset-Based Measurement of Poverty , 2010 .

[97]  Andrea Brandolini,et al.  On Synthetic Indices Of Multidimensional Well-Being: Health And Income Inequalities In France, Germany, Italy And The United Kingdom , 2007 .

[98]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[99]  L. Guiso,et al.  Risk Aversion, Wealth and Background Risk , 2001 .

[100]  Tommaso Proietti,et al.  Temporal Disaggregation by State Space Methods: Dynamic Regression Methods Revisited , 2006 .

[101]  Francesca Lotti,et al.  Employment, Innovation, and Productivity: Evidence from Italian Microdata , 2006 .

[102]  Leonardo Gambacorta,et al.  How Do Banks Set Interest Rates? , 2004 .

[103]  James Mitchell,et al.  An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth , 2005 .

[104]  F. Schivardi,et al.  Entry Barriers in Retail Trade , 2008 .

[105]  Tommaso Proietti,et al.  On the Estimation of Nonlinearly Aggregated Mixed Models , 2006 .

[106]  Marco Lippi,et al.  New Eurocoin: Tracking Economic Growth in Real Time , 2007 .