Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails

[1]  Alex Bloemendal,et al.  Limits of spiked random matrices I , 2010, Probability Theory and Related Fields.

[2]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[3]  Jianfeng Yao,et al.  A note on a Marčenko–Pastur type theorem for time series , 2011, 1109.1612.

[4]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[5]  Oliver Pfaffel,et al.  Eigenvalue distribution of large sample covariance matrices of linear processes , 2012, 1201.3828.

[6]  Alex Bloemendal,et al.  Limits of spiked random matrices II , 2011, 1109.3704.

[7]  C. Bordenave,et al.  Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.

[8]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.

[9]  Nicholas T. Longford,et al.  Random Coefficient Models , 1994, International Encyclopedia of Statistical Science.

[10]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[11]  Guangming Pan,et al.  Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix , 2010, J. Multivar. Anal..

[12]  C. Heyde On Large Deviation Probabilities in the Case of Attraction to a Non-Normal Stable Law , 2010 .

[13]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[14]  Z. Bai,et al.  Corrections to LRT on large-dimensional covariance matrix by RMT , 2009, 0902.0552.

[15]  Amir Dembo,et al.  Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.

[16]  N. Ng,et al.  Extreme values of ζ′(ρ) , 2007, 0706.1765.

[17]  Zhidong Bai,et al.  LARGE SAMPLE COVARIANCE MATRICES WITHOUT INDEPENDENCE STRUCTURES IN COLUMNS , 2008 .

[18]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[19]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[20]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[21]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[22]  Noureddine El Karoui,et al.  Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[23]  A. Soshnikov Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles , 2005, math/0504562.

[24]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[25]  W. Hachem,et al.  THE EMPIRICAL EIGENVALUE DISTRIBUTION OF A GRAM MATRIX: FROM INDEPENDENCE TO STATIONARITY , 2005, math/0502535.

[26]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[27]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[28]  Richard A. Davis,et al.  Point Process and Partial Sum Convergence for Weakly Dependent Random Variables with Infinite Variance , 1995 .

[29]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[31]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[32]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[33]  P. Brockwell,et al.  Time Series: Theory and Methods , 2013 .

[34]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[35]  Sidney I. Resnick,et al.  Limit Theory for Moving Averages of Random Variables with Regularly Varying Tail Probabilities , 1985 .

[36]  O. Kallenberg Random Measures , 1983 .

[37]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[38]  P. Embrechts,et al.  On closure and factorization properties of subexponential and related distributions , 1980, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[39]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[40]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[41]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[42]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[43]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .