Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d???20?mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ?30?mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33?N?A?1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness ? increases with , decreases with the square root of thrust and reaches about 15?N?kW?1 for d?=?40?mm; (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

[1]  Myron Robinson,et al.  Movement of air in the electric wind of the corona discharge , 1961, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[2]  Myron Robinson,et al.  A History of the Electric Wind , 1962 .

[3]  H. Ryżko Drift velocity of electrons and ions in dry and humid air and in water vapour , 1965 .

[4]  Sanborn C. Brown,et al.  Electrical Coronas: Their Basic Physical Mechanisms , 1966 .

[5]  P. S. Moller,et al.  Ion-Neutral Propulsion in Atmospheric Media , 1967 .

[6]  R. S. Sigmond Simple approximate treatment of unipolar space‐charge‐dominated coronas: The Warburg law and the saturation current , 1982 .

[7]  R. S. Sigmond,et al.  The corona discharge, its properties and specific uses , 1985 .

[8]  H. Bondar,et al.  Effect of neutral fluid velocity on direct conversion from electrical to fluid kinetic energy in an electro-fluid-dynamics (EFD) device , 1986 .

[9]  E. Moreau,et al.  Précipitation électrostatique dans une configuration pointe-plan , 2006 .

[10]  Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air , 2004 .

[11]  Lin Zhao,et al.  EHD flow in air produced by electric corona discharge in pin–plate configuration , 2005 .

[12]  M. Rickard,et al.  Maximizing ion-driven gas flows , 2006 .

[13]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[14]  Etude du vent ionique produit par décharge couronne à pression atmosphérique pour le contrôle d'écoulement aérodynamique , 2008 .

[15]  Modelling wire-to-wire corona discharge action on aerodynamics and comparison with experiment , 2008 .

[16]  Lin Zhao,et al.  Numerical Simulation of the Electrohydrodynamic Flow in a Single Wire-Plate Electrostatic Precipitator , 2008, IEEE Transactions on Industry Applications.

[17]  E. Moreau,et al.  Enhancing the mechanical efficiency of electric wind in corona discharges , 2008 .

[18]  Suresh V. Garimella,et al.  Enhancement of external forced convection by ionic wind , 2008 .

[19]  Jen-Shih Chang,et al.  Flow characteristics of dc wire-non-parallel plate electrohydrodynamic gas pumps , 2008 .

[20]  Chi-Chuan Wang,et al.  Heat transfer enhancement by needle-arrayed electrodes ― An EHD integrated cooling system , 2009 .

[21]  Marcus P Young,et al.  An Overview of Advanced Concepts for Near-Space Systems , 2009 .

[22]  William K. Thompson,et al.  An Investigation of Ionic Wind Propulsion , 2009 .

[23]  S. Wilkinson,et al.  Dielectric Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[24]  Jungho Hwang,et al.  Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration , 2010 .

[25]  D. Colás,et al.  Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure , 2010 .

[26]  M. Young,et al.  A Model of an Ideal Electrohydrodynamic Thruster , 2010 .

[27]  E. Moreau,et al.  Erratum: “Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators” [Appl. Phys. Lett. 100, 013901 (2012)] , 2012 .

[28]  Eric Moreau,et al.  EHD Force and Electric Wind Produced by Plasma Actuators Used for Airflow Control , 2012 .

[29]  Eric Moreau,et al.  Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators , 2012 .

[30]  A. A. Martins Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure , 2012, 1202.4613.

[31]  Majid Molki,et al.  Targeted heat transfer augmentation in circular tubes using a corona jet , 2012 .

[32]  E. Moreau,et al.  Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field , 2013 .

[33]  Christian Friedrich,et al.  Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator , 2013 .