Tracking Paths in Planar Graphs

We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path results in a unique sequence. In this paper, we show that this problem remains NP-complete when the graph is planar and we give a 4-approximation algorithm in this setting. We also show, via Courcelle's theorem, that it can be solved in linear time for graphs of bounded-clique width, when its clique decomposition is given in advance.

[1]  Donald E. Knuth,et al.  The Problem of Compatible Representatives , 1992, SIAM J. Discret. Math..

[2]  Aritra Banik,et al.  Fixed-Parameter Tractable Algorithms for Tracking Set Problems , 2018, CALDAM.

[3]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[4]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Craig Partridge,et al.  Hash-based IP traceback , 2001, SIGCOMM.

[6]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[7]  Bruno Courcelle,et al.  Automata for the verification of monadic second-order graph properties , 2012, J. Appl. Log..

[8]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[9]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[10]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[11]  N. Ling The Mathematical Theory of Infectious Diseases and its applications , 1978 .

[12]  Devavrat Shah,et al.  Rumors in a Network: Who's the Culprit? , 2009, IEEE Transactions on Information Theory.

[13]  Kotagiri Ramamohanarao,et al.  Survey of network-based defense mechanisms countering the DoS and DDoS problems , 2007, CSUR.

[14]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[15]  Stefano Leucci,et al.  Tracking Routes in Communication Networks , 2019, SIROCCO.

[16]  Matthew J. Katz,et al.  Tracking Paths , 2017, CIAC.

[17]  M. Newman,et al.  Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Alexander Grey,et al.  The Mathematical Theory of Infectious Diseases and Its Applications , 1977 .

[19]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[20]  Sania Bhatti,et al.  Survey of Target Tracking Protocols Using Wireless Sensor Network , 2009, 2009 Fifth International Conference on Wireless and Mobile Communications.

[21]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[22]  Samir R. Das,et al.  Tracking moving targets in a smart sensor network , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[23]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[24]  Saket Saurabh,et al.  A Polynomial Sized Kernel for Tracking Paths Problem , 2018, LATIN.

[25]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[26]  R. Halin S-functions for graphs , 1976 .

[27]  Stefan Ma,et al.  Epidemiology and control of SARS in Singapore. , 2006, Annals of the Academy of Medicine, Singapore.

[28]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[29]  Bruno Courcelle,et al.  Computations by fly-automata beyond monadic second-order logic , 2013, Theor. Comput. Sci..