Convergence analysis of Riemannian trust-region methods
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[3] D. Luenberger. The Gradient Projection Method Along Geodesics , 1972 .
[4] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[5] M. Powell. CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .
[6] Philippe L. Toint,et al. Towards an efficient sparsity exploiting newton method for minimization , 1981 .
[7] D. Sorensen. Newton's method with a model trust region modification , 1982 .
[8] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[9] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Ahmed H. Sameh,et al. Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.
[12] C. Udriste,et al. Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .
[13] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[14] A. Bloch. Hamiltonian and Gradient Flows, Algorithms and Control , 1995 .
[15] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[16] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[17] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[18] G. W. Stewart,et al. Matrix algorithms , 1998 .
[19] Craig T. Lawrence,et al. A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm , 2000, SIAM J. Optim..
[20] James Lam,et al. An approximate approach to H2 optimal model reduction , 1999, IEEE Trans. Autom. Control..
[21] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[22] A. Iserles,et al. Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.
[23] Nicholas I. M. Gould,et al. Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..
[24] B. Owren,et al. The Newton Iteration on Lie Groups , 2000 .
[25] Zhaojun Bai,et al. Nonlinear Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.
[26] J. Vandewalle,et al. New Lyapunov functions for the continuous-time QR algorithm , 2000 .
[27] A. Sameh,et al. The trace minimization method for the symmetric generalized eigenvalue problem , 2000 .
[28] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[29] William W. Hager,et al. Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..
[30] Robert E. Mahony,et al. The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..
[31] John B. Moore,et al. Quadratically convergent algorithms for optimal dextrous hand grasping , 2002, IEEE Trans. Robotics Autom..
[32] P. Priouret,et al. Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.
[33] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[34] Jonathan H. Manton,et al. Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..
[35] K. Huper,et al. Newton-like methods for numerical optimization on manifolds , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..
[36] P. Absil,et al. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .
[37] S. Shankar Sastry,et al. Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.
[38] P. Absil,et al. Trust-region methods on Riemannian manifolds with applications in numerical linear algebra , 2004 .
[39] William W. Hager,et al. Global convergence of SSM for minimizing a quadratic over a sphere , 2004, Math. Comput..
[40] Pierre-Antoine Absil,et al. Adaptive Model Trust Region Methods for Generalized Eigenvalue Problems , 2005, International Conference on Computational Science.
[41] Shotaro Akaho,et al. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold , 2005, Neurocomputing.
[42] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[43] Jean-Pierre Dedieu,et al. Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..
[44] João M. F. Xavier,et al. Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[45] Jérome M. B. Walmag,et al. A Note on Trust-Region Radius Update , 2005, SIAM J. Optim..
[46] P. Absil,et al. A truncated-CG style method for symmetric generalized eigenvalue problems , 2006 .
[47] Yaguang Yang. Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization , 2007 .
[48] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..