Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation
暂无分享,去创建一个
Qianshun Chang | Weiwei Sun | Weiwei Sun | Q. Chang | Erhui Jia | E. Jia
[1] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[2] D. Pathria,et al. Exact solutions for a generalized nonlinear Schrödinger equation , 1989 .
[3] K. Konno,et al. Self-Focussing of Laser Beam in Nonlinear Media , 1979 .
[4] Catherine Sulem,et al. Numerical simulation of singular solutions to the two‐dimensional cubic schrödinger equation , 1984 .
[5] R. Bullough,et al. Solitons in Laser Physics , 1979 .
[6] Qian-shun Chang,et al. A numerical method for a system of generalized nonlinear Schro¨dinger equations , 1986 .
[7] W. Strauss. Mathematical aspects of classical nonlinear field equations , 1979 .
[8] Qianshun Chang,et al. Multigrid and adaptive algorithm for solving the nonlinear Schrodinger equation , 1990 .
[9] I. Bialynicki-Birula,et al. Gaussons: Solitons of the Logarithmic Schrödinger Equation , 1979 .
[10] Richard H. Enns,et al. Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrodinger equation , 1986 .
[11] ChangQian-shun,et al. A numerical method for a system of generalized nonlinear Schrodinger equations , 1986 .
[12] T. Taha,et al. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .