Steering exact penalty methods for nonlinear programming

This paper reviews, extends and analyses a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be a heuristic and is determined, instead, by a subproblem with clearly defined objectives. The new penalty update strategy is presented in the context of sequential quadratic programming and sequential linear-quadratic programming methods that use trust regions to promote convergence. The paper concludes with a discussion of penalty parameters for merit functions used in line search methods.

[1]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[2]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[3]  A. Conn Constrained Optimization Using a Nondifferentiable Penalty Function , 1973 .

[4]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[5]  T. Pietrzykowski,et al.  A Penalty Function Method Converging Directly to a Constrained Optimum , 1977 .

[6]  Richard A. Tapia,et al.  A trust region strategy for nonlinear equality constrained op-timization , 1984 .

[7]  Arne Drud,et al.  CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems , 1985, Math. Program..

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  Roger Fletcher,et al.  Nonlinear programming and nonsmooth optimization by successive linear programming , 1989, Math. Program..

[10]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[11]  M. El-Alem A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .

[12]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[13]  James V. Burke,et al.  A Robust Trust Region Method for Constrained Nonlinear Programming Problems , 1992, SIAM J. Optim..

[14]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[15]  A. Sartenaer,et al.  Automatic decrease of the penalty parameter in exact penalty function methods , 1995 .

[16]  Ya-Xiang Yuan,et al.  On the convergence of a new trust region algorithm , 1995 .

[17]  John E. Dennis,et al.  A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..

[18]  Jorge Nocedal,et al.  On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..

[19]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[20]  Jimmie D. Lawson,et al.  Presentation , 2000, MFCSIT.

[21]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[22]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[23]  M. Anitescu On Solving Mathematical Programs With Complementarity Constraints As Nonlinear Programs , 2002 .

[24]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[25]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[26]  Roger Fletcher,et al.  On the global convergence of an SLP–filter algorithm that takes EQP steps , 2003, Math. Program..

[27]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[28]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[29]  Nicholas I. M. Gould,et al.  An algorithm for nonlinear optimization using linear programming and equality constrained subproblems , 2004, Math. Program..

[30]  Mihai Anitescu,et al.  Global Convergence of an Elastic Mode Approach for a Class of Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[31]  Nicholas I. M. Gould,et al.  On the Convergence of Successive Linear-Quadratic Programming Algorithms , 2005, SIAM J. Optim..

[32]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[33]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[34]  Donald Goldfarb,et al.  l2-PENALTY METHODS FOR NONLINEAR PROGRAMMING WITH STRONG GLOBAL CONVERGENCE PROPERTIES , 2004 .

[35]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[36]  Robert J. Vanderbei,et al.  Interior-Point Algorithms, Penalty Methods and Equilibrium Problems , 2006, Comput. Optim. Appl..

[37]  Nicholas I. M. Gould,et al.  An Interior-Point l 1 -Penalty Method for Nonlinear Optimization , 2010 .