Consensus sets for affine transformation uncertainty polytopes
暂无分享,去创建一个
[1] Mark Segal,et al. Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.
[2] Hugh F. Durrant-Whyte,et al. Uncertain geometry , 1989 .
[3] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[4] Deepak Kapur,et al. Geometric reasoning , 1989 .
[5] Peter Veelaert. Concurrency of Line Segments in Uncertain Geometry , 2002, DGCI.
[6] Peter Veelaert,et al. Computing the uncertainty of transformations in digital images , 2005, IS&T/SPIE Electronic Imaging.
[7] Peter Veelaert,et al. Uncertain Geometry in Computer Vision , 2005, DGCI.
[8] Antonio Criminisi,et al. Accurate Visual Metrology from Single and Multiple Uncalibrated Images , 2001, Distinguished Dissertations.
[9] Atsushi Imiya,et al. Digital and Image Geometry , 2002, Lecture Notes in Computer Science.
[10] C. Schmid,et al. Scale-invariant shape features for recognition of object categories , 2004, CVPR 2004.
[11] Carlo H. Séquin,et al. Consistent calculations for solids modeling , 1985, SCG '85.
[12] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[13] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[14] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[15] David G. Lowe,et al. Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..
[16] Chee-Keng Yap. Geometric Consistency Theorem for a Symbolic Perturbation Scheme , 1990, J. Comput. Syst. Sci..
[17] Peter Veelaert,et al. Graph-theoretical properties of parallelism in the digital plane , 2003, Discret. Appl. Math..
[18] Robert C. Bolles,et al. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.
[19] Kokichi Sugihara,et al. On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..
[20] Peter Veelaert,et al. Geometric Constructions in the Digital Plane , 1999, Journal of Mathematical Imaging and Vision.
[21] Azriel Rosenfeld,et al. Digital geometry - geometric methods for digital picture analysis , 2004 .
[22] Cordelia Schmid,et al. A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.
[23] Wolfgang Förstner,et al. Uncertainty and Projective Geometry , 2005 .
[24] AZRIEL ROSENFELD,et al. Digital Straight Line Segments , 1974, IEEE Transactions on Computers.
[25] Alan Fleming,et al. Geometric Relationships Between Toleranced Features , 1988, Artif. Intell..
[26] Bernhard P. Wrobel,et al. Multiple View Geometry in Computer Vision , 2001 .
[27] 金谷 健一. Statistical optimization for geometric computation : theory and practice , 2005 .
[28] Peter Veelaert. Collinearity and Weak Collinearity in the Digital Plane , 2000, Digital and Image Geometry.
[29] D. P. Fairney,et al. 3-D object recognition and orientation from single noisy 2-D images , 1996, Pattern Recognit. Lett..
[30] J. Ponce,et al. Segmenting, modeling, and matching video clips containing multiple moving objects , 2004, CVPR 2004.
[31] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[32] Hugh F. Durrant-Whyte,et al. Uncertain geometry in robotics , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.
[33] Victor J. Milenkovic,et al. Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..
[34] Peter F. M. Nacken. A Metric for Line Segments , 1993, IEEE Trans. Pattern Anal. Mach. Intell..