Consensus sets for affine transformation uncertainty polytopes

We introduce an uncertainty model for geometric transformations that can be used in computer vision as well as interactive computer graphics. The model is based on polygonal uncertainty regions, transformation polytopes and their consensus sets. The most important result of this paper is that the RANSAC algorithm can be placed in a broader framework of search algorithms that look for good parameter uncertainty polytopes. To guide the search, each polytope has a consensus set whose size is a measure for its quality.

[1]  Mark Segal,et al.  Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.

[2]  Hugh F. Durrant-Whyte,et al.  Uncertain geometry , 1989 .

[3]  Chee-Keng Yap,et al.  Robust Geometric Computation , 2016, Encyclopedia of Algorithms.

[4]  Deepak Kapur,et al.  Geometric reasoning , 1989 .

[5]  Peter Veelaert Concurrency of Line Segments in Uncertain Geometry , 2002, DGCI.

[6]  Peter Veelaert,et al.  Computing the uncertainty of transformations in digital images , 2005, IS&T/SPIE Electronic Imaging.

[7]  Peter Veelaert,et al.  Uncertain Geometry in Computer Vision , 2005, DGCI.

[8]  Antonio Criminisi,et al.  Accurate Visual Metrology from Single and Multiple Uncalibrated Images , 2001, Distinguished Dissertations.

[9]  Atsushi Imiya,et al.  Digital and Image Geometry , 2002, Lecture Notes in Computer Science.

[10]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, CVPR 2004.

[11]  Carlo H. Séquin,et al.  Consistent calculations for solids modeling , 1985, SCG '85.

[12]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[13]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[16]  Chee-Keng Yap Geometric Consistency Theorem for a Symbolic Perturbation Scheme , 1990, J. Comput. Syst. Sci..

[17]  Peter Veelaert,et al.  Graph-theoretical properties of parallelism in the digital plane , 2003, Discret. Appl. Math..

[18]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[19]  Kokichi Sugihara,et al.  On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..

[20]  Peter Veelaert,et al.  Geometric Constructions in the Digital Plane , 1999, Journal of Mathematical Imaging and Vision.

[21]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[22]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[23]  Wolfgang Förstner,et al.  Uncertainty and Projective Geometry , 2005 .

[24]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[25]  Alan Fleming,et al.  Geometric Relationships Between Toleranced Features , 1988, Artif. Intell..

[26]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[27]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .

[28]  Peter Veelaert Collinearity and Weak Collinearity in the Digital Plane , 2000, Digital and Image Geometry.

[29]  D. P. Fairney,et al.  3-D object recognition and orientation from single noisy 2-D images , 1996, Pattern Recognit. Lett..

[30]  J. Ponce,et al.  Segmenting, modeling, and matching video clips containing multiple moving objects , 2004, CVPR 2004.

[31]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[32]  Hugh F. Durrant-Whyte,et al.  Uncertain geometry in robotics , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[33]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[34]  Peter F. M. Nacken A Metric for Line Segments , 1993, IEEE Trans. Pattern Anal. Mach. Intell..