On the numerical simulation of sheet metal blanking process

The use of the blanking process has been widely spread in mass production industries. In this technique, the quality of the final product is directly related to the setting parameters of the process and the material response of the sheet. In the present work, a general framework based on the finite element method for the simulation of the sheet metal blanking process is presented. The proposed approach properly addresses all the numerical challenges related to blanking. First, an extension of elasto-viscoplastic constitutive equations for the large strain regime is used to take into account the material strain-rate sensitivity. Then, the inertial effects coming from high velocity operations are considered by means of an implicit time integration scheme. Moreover, the frictional contact interactions are simulated with the classical Coulomb law and an energetically consistent formulation of area regularization. Finally, ductile fracture is modeled thanks to the element deletion method coupled with a fracture criterion. The blanking process is then simulated for different setting parameters. The accuracy of this approach is evaluated by comparing the numerical predictions to experimental results for both quasi-static and dynamic conditions. Good agreement is found between experimental and numerical results for all cases.

[1]  S. Shima,et al.  Criteria for ductile fracture and their applications , 1980 .

[2]  Marc G. D. Geers,et al.  An integrated continuous-discontinuous approach towards damage engineering in sheet metal forming processes , 2006 .

[3]  Fpt Frank Baaijens,et al.  Evaluation of ductile fracture models for different metals in blanking , 2001 .

[4]  Paulo A.F. Martins,et al.  Ductile fracture in metalworking: experimental and theoretical research , 2000 .

[5]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[6]  S. K. Maiti,et al.  Assessment of influence of some process parameters on sheet metal blanking , 2000 .

[7]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[8]  N. N. Kishore,et al.  Finite-element analysis of the blanking process , 1989 .

[9]  Romain Boman,et al.  Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of high-speed processes , 2013 .

[10]  Taylan Altan,et al.  Determination of forces in high speed blanking using FEM and experiments , 2013 .

[11]  Jean-Philippe Ponthot,et al.  Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes , 2002 .

[12]  S. Clift,et al.  Fracture prediction in plastic deformation processes , 1990 .

[14]  Paulo A.F. Martins,et al.  Fracture predicting in bulk metal forming , 1996 .

[15]  T. Wierzbicki,et al.  Calibration and evaluation of seven fracture models , 2005 .

[16]  J. Ponthot,et al.  The Influence of Equivalent Contact Area Computation in 3D Extended Node to Surface Contact Elements , 2014 .

[17]  Ridha Hambli,et al.  Finite element modeling of sheet-metal blanking operations with experimental verification , 2000 .

[18]  Ted Belytschko,et al.  A three-dimensional impact-penetration algorithm with erosion , 1987 .

[19]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[20]  P. Wriggers,et al.  FINITE ELEMENT FORMULATION OF LARGE DEFORMATION IMPACT-CONTACT PROBLEMS WITH FRICTION , 1990 .

[21]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[22]  Romain Boman,et al.  Efficient 3D data transfer operators based on numerical integration , 2015 .

[23]  Taylan Altan,et al.  Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments , 1996 .

[24]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[25]  Jacek Mucha,et al.  An experimental analysis of effects of various material tool’s wear on burr during generator sheets blanking , 2010 .

[26]  N. S. Ong,et al.  Effect of punch clearance in the high-speed blanking of thick metals using an accelerator designed for a mechanical press , 1989 .

[27]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[28]  Mohamed Rachik,et al.  Some phenomenological and computational aspects of sheet metal blanking simulation , 2002 .

[29]  Fpt Frank Baaijens,et al.  Predicting the shape of blanked products: a finite element approach , 2000 .

[30]  J. Ponthot,et al.  An implicit erosion algorithm for the numerical simulation of metallic and composite materials submitted to high strain rate. , 2013 .

[31]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[32]  Fpt Frank Baaijens,et al.  Prediction of ductile fracture in metal blanking , 2000 .

[33]  Jun Sun Effect of stress triaxiality on micro-mechanisms of void coalesence and micro-fracture ductility of materials , 1991 .

[34]  Jean-Philippe Ponthot,et al.  An efficient 3D implicit approach for the thermomechanical simulation of elastic–viscoplastic materials submitted to high strain rate and damage , 2013 .

[35]  H. H. Wisselink,et al.  Analysis of guillotining and slitting, finite element simulations , 2000 .

[36]  Jean-Philippe Ponthot Traitement unifié de la Mécanique des Milieux Continus Solides en Grandes Transformations par la Méthode des Eléments Finis , 1995 .

[37]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[38]  M. Estrems,et al.  Finite element analysis of optimum clearance in the blanking process , 1998 .

[39]  Paulo A.F. Martins,et al.  On the utilisation of ductile fracture criteria in cold forging , 2003 .

[40]  Romain Boman,et al.  Efficient ALE mesh management for 3D quasi‐Eulerian problems , 2012 .

[41]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[42]  D Dirk Brokken,et al.  Numerical modelling of ductile fracture in blanking , 1999 .

[43]  Fahrettin Ozturk,et al.  ANALYSIS OF FORMING LIMITS USING DUCTILE FRACTURE CRITERIA , 2004 .

[44]  J. Roelandt,et al.  Numerical Simulation of Sheet Metal Blanking Predicting the Shape of the Cut Edge , 2002 .

[45]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[46]  Vincent Lemiale,et al.  Description of numerical techniques with the aim of predicting the sheet metal blanking process by FEM simulation , 2009 .

[47]  K. G. Swift Chapter 4 – Forming Processes , 2013 .

[48]  Olaf Engler,et al.  Modelling of ductile failure in aluminium sheet forming simulation , 2011 .

[49]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[50]  Jean-Philippe Ponthot,et al.  An extension of the radial return algorithm to account for rate-dependent effects in frictional contact and visco-plasticity , 1998 .