Nanomagnet logic: progress toward system-level integration

Quoting the International Technology Roadmap for Semiconductors (ITRS) 2009 Emerging Research Devices section, 'Nanomagnetic logic (NML) has potential advantages relative to CMOS of being non-volatile, dense, low-power, and radiation-hard. Such magnetic elements are compatible with MRAM technology, which can provide input–output interfaces. Compatibility with MRAM also promises a natural integration of memory and logic. Nanomagnetic logic also appears to be scalable to the ultimate limit of using individual atomic spins.' This article reviews progress toward complete and reliable NML systems. More specifically, we (i) review experimental progress toward fundamental characteristics a device must possess if it is to be used in a digital system, (ii) consider how the NML design space may impact the system-level energy (especially when considering the clock needed to drive a computation), (iii) explain--using both the NML design space and a discussion of clocking as context—how reliable circuit operation may be achieved, (iv) highlight experimental efforts regarding CMOS friendly clock structures for NML systems, (v) explain how electrical I/O could be achieved, and (vi) conclude with a brief discussion of suitable architectures for this technology. Throughout the article, we attempt to identify important areas for future work.

[1]  Peter M. Kogge,et al.  Exploring and exploiting wire-level pipelining in emerging technologies , 2001, ISCA 2001.

[2]  Jon M. Slaughter,et al.  The science and technology of magnetoresistive tunneling memory , 2002 .

[3]  Michael T. Niemier,et al.  System-level energy and performance projections for nanomagnet-based logic , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[4]  Kaushik Roy,et al.  Nano-magnet based ultra-low power logic design using non-majority gates , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[5]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[6]  Hans Schmid,et al.  Multi-ferroic magnetoelectrics , 1994 .

[7]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[8]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[9]  William J. Gallagher,et al.  Generation of local magnetic fields at megahertz rates for the study of domain wall propagation in magnetic nanowires , 2009 .

[10]  W. Porod,et al.  Non-majority magnetic logic gates: a review of experiments and future prospects for ‘shape-based’ logic , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  V. Metlushko,et al.  Effect of controlled asymmetry on the switching characteristics of ring-based MRAM design , 2006, IEEE Transactions on Nanotechnology.

[12]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[13]  W. Porod,et al.  Experimental Demonstration of Fanout for Nanomagnetic Logic , 2010, IEEE Transactions on Nanotechnology.

[14]  Paolo Lugli,et al.  On-chip Extraordinary Hall-effect sensors for characterization of nanomagnetic logic devices , 2010 .

[15]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[16]  W. Porod,et al.  On-Chip Clocking of Nanomagnet Logic Lines and Gates , 2012, IEEE Transactions on Nanotechnology.

[17]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[18]  Mohmmad T. Alam,et al.  On-Chip Clocking for Nanomagnet Logic Devices , 2010, IEEE Transactions on Nanotechnology.

[19]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[20]  Supriyo Bandyopadhyay,et al.  Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits , 2009, Nanotechnology.

[21]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[22]  Saied N. Tehrani,et al.  Low-power switching in magnetoresistive random access memory bits using enhanced permeability dielectric films , 2007 .

[23]  W. Porod,et al.  Magnetic–Electrical Interface for Nanomagnet Logic , 2011, IEEE Transactions on Nanotechnology.

[24]  V. Roychowdhury,et al.  Performance of Magnetic Quantum Cellular Automata and Limitations Due to Thermal Noise , 2009, IEEE Transactions on Nanotechnology.

[25]  S. Datta,et al.  Switching Energy of Ferromagnetic Logic Bits , 2009, IEEE Transactions on Nanotechnology.

[26]  W. Porod,et al.  Experimental demonstration of fanout for Nanomagnet Logic , 2010, 68th Device Research Conference.

[27]  D. Ralph,et al.  Measurement of the spin-transfer-torque vector in magnetic tunnel junctions , 2007, 0705.4207.

[28]  Dirk Meyners,et al.  Shape dependence of the magnetization reversal in sub-μm magnetic tunnel junctions , 2004 .

[29]  Hiromitsu Hada,et al.  Magnetic Properties and Writing Characteristics of Magnetic Clad Lines in Magnetoresistive Random Access Memory Devices , 2008 .

[30]  Hiroaki Honjo,et al.  Performance of shape-varying magnetic tunneling junction for high-speed magnetic random access memory cells , 2009 .

[31]  W. Porod,et al.  Power dissipation in nanomagnetic logic devices , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[32]  Wolfgang Porod,et al.  Controlling Magnetic Circuits: How Clock Structure Implementation will Impact Logical Correctness and Power , 2009, 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[33]  W. Porod,et al.  Experimental progress of and prospects for nanomagnet logic (NML) , 2010, 2010 Silicon Nanoelectronics Workshop.

[34]  Tao Wu,et al.  Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices , 2011 .

[35]  J. Slaughter,et al.  A low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[36]  Wolfgang Porod,et al.  Investigation of shape-dependent switching of coupled nanomagnets , 2003 .

[37]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[38]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[39]  M. I. Elmasry,et al.  Dynamic current mode logic (DyCML): a new low-power high-performance logic style , 2001, IEEE J. Solid State Circuits.

[40]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[41]  Wolfgang Porod,et al.  Field-coupled computing in magnetic multilayers , 2008 .

[42]  S. Fukami,et al.  Low-current perpendicular domain wall motion cell for scalable high-speed MRAM , 2006, 2009 Symposium on VLSI Technology.

[43]  Doris Schmitt-Landsiedel,et al.  Nanomagnetic Logic: Demonstration of directed signal flow for field-coupled computing devices , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[44]  J. Bokor,et al.  Simulation studies of nanomagnet-based logic architecture. , 2008, Nano letters (Print).

[45]  K.L. Wang,et al.  Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry , 2008, IEEE Transactions on Magnetics.

[46]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[47]  Ching-Ray Chang,et al.  Schwarz–Christoffel Transformation for Cladding Conducting Lines , 2009, IEEE Transactions on Magnetics.

[48]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[49]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[50]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[51]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[52]  W. Porod,et al.  Non-volatile and reprogrammable MQCA-based majority gates , 2009, 2009 Device Research Conference.

[53]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[54]  Wolfgang Porod,et al.  Behavior of Nanomagnet Logic in the presence of thermal noise , 2010, 2010 14th International Workshop on Computational Electronics.

[55]  Michael T. Niemier,et al.  Fabrication Variations and Defect Tolerance for Nanomagnet-Based QCA , 2008, 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems.

[56]  R. Allenspach,et al.  Magnetologic devices fabricated by nanostencil lithography , 2010, Nanotechnology.

[57]  Russell P. Cowburn,et al.  Micromagnetics Simulation of Deep-Submicron Supermalloy Disks , 2001 .

[58]  H. Ohno,et al.  Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions , 2008 .

[59]  Mohammad Salehi Fashami,et al.  Magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic. , 2010, Nanotechnology.

[60]  Wolfgang Porod,et al.  Bridging the gap between nanomagnetic devices and circuits , 2008, 2008 IEEE International Conference on Computer Design.

[61]  Wolfgang Porod,et al.  Field-coupled nanomagnets for interconnect-free nonvolatile computing , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[62]  X.S. Hu,et al.  Using CAD to Shape Experiments in Molecular QCA , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[63]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[64]  C. Subramanian,et al.  A 180 Kbit Embeddable MRAM Memory Module , 2008, IEEE Journal of Solid-State Circuits.

[65]  R Wiesendanger,et al.  Shape-dependent thermal switching behavior of superparamagnetic nanoislands. , 2004, Physical review letters.

[66]  Sanjukta Bhanja,et al.  Magnetic cellular automata coplanar cross wire systems , 2010 .

[67]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[68]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[69]  D. Schmitt-Landsiedel,et al.  Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled Computing , 2008, IEEE Transactions on Nanotechnology.

[70]  Saied N. Tehrani,et al.  A 1-Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects , 2003, IEEE J. Solid State Circuits.

[71]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[72]  W. Porod,et al.  Shape Engineering for Controlled Switching With Nanomagnet Logic , 2012, IEEE Transactions on Nanotechnology.