Low-rank tensor methods for linear systems and eigenvalue problems

This thesis is concerned with methods for the approximate solution of high-dimensional linear systems and eigenvalue problems, using low-rank tensor techniques. In recent years, new low-rank tensor decompositions have been developed, which allow the black box approximation of a tensor at a given accuracy, and still have storage requirements that grow only linearly in the number of dimensions for a fixed rank. We have implemented a Matlab toolbox allowing the storage of a tensor in the Hierarchical Tucker decomposition (HTD), one of the aforementioned low-rank tensor decompositions. Additionally, basic operations such as the addition or inner product of two tensors in HTD are featured. Moreover, we introduce a new variant of approximation in HTD. A detailed description of all operations in the htucker toolbox is provided, as well as many examples. Applications to parameter-dependent linear systems, stochastic elliptic partial differential equations (PDEs), high-dimensional parabolic PDEs and high-dimensional elliptic PDE eigenvalue problems are presented. Through discretization on a tensor grid, our examples result in linear systems, A(X ) = B, and eigenvalue problems, A(X ) = λX . The operator A : Rn1×···×nd → Rn1×···×nd typically is a short sum of Kronecker products of matrices. The approximability of the solution tensor in HTD is discussed for the case of analytically parameter-dependent linear systems. For the case of linear systems, we adapt well-known vector iterations, specifically the preconditioned Richardson, the preconditioned conjugate gradients and the preconditioned BiCGstab methods, to the low-rank case by replacing the iterated tensors with a low-rank approximation in each step. Different schemes for choosing the accuracy of these approximations in each step are presented. The application to a certain space-time discretization of parabolic evolution equations is discussed in detail. For high-dimensional eigenvalue problems a variant of the LOBPCG method, a vector iteration for determining the smallest eigenvalue and the respective eigenvector of a matrix, is developed, following the ideas used for high-dimensional linear systems. Alternatively, we explore the DMRG or (M)ALS method, first introduced in the context of computational quantum chemistry. Finally, a combination of both (M)ALS and our variant of LOBPCG is presented.

[1]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[2]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[3]  Jan G. Korvink,et al.  Parameter preserving model order reduction for MEMS applications , 2011 .

[4]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[5]  Karl Meerbergen,et al.  Shift-and-invert iteration for purely imaginary eigenvalues with application to the detection of Hopf Bifurcations in large scale problems , 2008 .

[6]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[7]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[10]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[11]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[12]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[13]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[14]  Valeria Simoncini,et al.  Extended Krylov subspace for parameter dependent systems , 2010 .

[15]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[16]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[19]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[20]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[21]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[22]  Jinchao Xu The method of subspace corrections , 2001 .

[23]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[24]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[25]  Henryk Woźniakowski Roundoff-error analysis of a new class of conjugate-gradient algorithms , 1980 .

[26]  Hans-Dieter Meyer,et al.  A numerical study on the performance of the multiconfiguration time-dependent Hartree method for density operators , 2000 .

[27]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[28]  Yuji Nakatsukasa,et al.  Perturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems , 2011, SIAM J. Matrix Anal. Appl..

[29]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[30]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[31]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[32]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[33]  L. Goddard Approximation of Functions , 1965, Nature.

[34]  Barbara I. Wohlmuth,et al.  Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.

[35]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[36]  F. Verstraete,et al.  Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.

[37]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[38]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[39]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[40]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[41]  Karl Meerbergen,et al.  Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems , 2010, SIAM J. Matrix Anal. Appl..

[42]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[43]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[44]  Reinhold Schneider,et al.  Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.

[45]  L. Trefethen Spectra and pseudospectra , 2005 .

[46]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[47]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[48]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[49]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[50]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[51]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[52]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[53]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[54]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[55]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[56]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[57]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[58]  Wolfgang Hackbusch,et al.  A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format , 2012, Numerische Mathematik.

[59]  Roman Andreev,et al.  Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .

[60]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[61]  R. Freund Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .

[62]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[63]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[64]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[65]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[66]  Guifre Vidal,et al.  Entanglement Renormalization: An Introduction , 2009, 0912.1651.

[67]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..