Low-rank tensor methods for linear systems and eigenvalue problems
暂无分享,去创建一个
[1] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[2] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[3] Jan G. Korvink,et al. Parameter preserving model order reduction for MEMS applications , 2011 .
[4] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[5] Karl Meerbergen,et al. Shift-and-invert iteration for purely imaginary eigenvalues with application to the detection of Hopf Bifurcations in large scale problems , 2008 .
[6] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[7] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[8] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[9] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[10] Boris N. Khoromskij,et al. Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..
[11] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[12] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[13] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[14] Valeria Simoncini,et al. Extended Krylov subspace for parameter dependent systems , 2010 .
[15] Boris N. Khoromskij,et al. Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..
[16] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[17] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[18] Ivan Oseledets,et al. QTT approximation of elliptic solution operators in higher dimensions , 2011 .
[19] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[20] Yu-An Chen,et al. Density matrix renormalization group , 2014 .
[21] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[22] Jinchao Xu. The method of subspace corrections , 2001 .
[23] Daniel Kressner,et al. Algorithm 941 , 2014 .
[24] Peter Benner,et al. On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..
[25] Henryk Woźniakowski. Roundoff-error analysis of a new class of conjugate-gradient algorithms , 1980 .
[26] Hans-Dieter Meyer,et al. A numerical study on the performance of the multiconfiguration time-dependent Hartree method for density operators , 2000 .
[27] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[28] Yuji Nakatsukasa,et al. Perturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems , 2011, SIAM J. Matrix Anal. Appl..
[29] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[30] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[31] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[32] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[33] L. Goddard. Approximation of Functions , 1965, Nature.
[34] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[35] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[36] F. Verstraete,et al. Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.
[37] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[38] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[39] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[40] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[41] Karl Meerbergen,et al. Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems , 2010, SIAM J. Matrix Anal. Appl..
[42] Daniel M. Dunlavy,et al. A scalable optimization approach for fitting canonical tensor decompositions , 2011 .
[43] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[44] Reinhold Schneider,et al. Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.
[45] L. Trefethen. Spectra and pseudospectra , 2005 .
[46] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[47] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[48] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[49] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[50] Daniel Kressner,et al. Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..
[51] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[52] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[53] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[54] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..
[55] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[56] U. Manthe,et al. The multi-configurational time-dependent Hartree approach , 1990 .
[57] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[58] Wolfgang Hackbusch,et al. A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format , 2012, Numerische Mathematik.
[59] Roman Andreev,et al. Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .
[60] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[61] R. Freund. Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .
[62] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[63] Othmar Koch,et al. Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..
[64] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[65] Daniel Kressner,et al. Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..
[66] Guifre Vidal,et al. Entanglement Renormalization: An Introduction , 2009, 0912.1651.
[67] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..