Different Roles of a Boron Substitute for Carbon and Silicon in β-SiC

The first-principles numerical simulation is employed to calculate the effect of replacement of carbon and silicon with boron on the electronic structure and optical properties of β-SiC. Mulliken analysis shows that the B impurity bond lengths shrink in the case of BSi, while they expand with reference to BC. In addition, BSi contains C—C, Si—Si and B—Si bonds. The calculated results show that the two systems of BC and BSi apply different dispersion. BC is in accordance with the Lorentz dispersion theory while BSi follows the Drude dispersion theory. Theoretic analysis and quantitative calculation are used for conductivity spectra in the infrared region.

[1]  M. Cao,et al.  Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region , 2010 .

[2]  Yuan jie,et al.  Modification of Band Gap of β-SiC by N-Doping , 2009 .

[3]  Yuan jie,et al.  Microwave Absorption and Response Modeling of Nanocomposites Embedded SiC Nanoparticles , 2009 .

[4]  H. Yousefi,et al.  Preparation of silicon carbide film by a plasma focus device , 2008 .

[5]  T. Chassagne,et al.  Nitrogen doping of 3C-SiC thin films grown by CVD in a resistively heated horizontal hot-wall reactor , 2008 .

[6]  Yuan jie,et al.  Mechanism of Enhanced Dielectric Properties of SiC/Ni Nanocomposites , 2008 .

[7]  F. Giannazzo,et al.  Acceptor, compensation, and mobility profiles in multiple Al implanted 4H‐SiC , 2007 .

[8]  P. Chu,et al.  Stability of luminescent 3C-SiC nanocrystallites in aqueous solution , 2006 .

[9]  M. Cao,et al.  A nanoscale core-shell of β-SiCP–Ni prepared by electroless plating at lower temperature , 2006 .

[10]  X. M. Wu,et al.  The structure and optical properties of SiC film on Si (111) substrate with a ZnO buffer layer by RF-magnetron sputtering technique , 2006 .

[11]  W. Skorupa,et al.  A comparative study of the electrical properties of heavily Al implanted, single crystalline and nanocrystalline SiC , 2006 .

[12]  Á. Gali,et al.  Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes , 2006 .

[13]  A. Henry,et al.  Electron paramagnetic resonance and theoretical studies of shallow phosphorous centers in 3C-, 4H-, and 6H-SiC , 2006 .

[14]  X. M. Wu,et al.  The structure and photoluminescence properties of SiC films doped with Al , 2005 .

[15]  W. J. Choyke,et al.  Activation of shallow boron acceptor in C∕B coimplanted silicon carbide: A theoretical study , 2005 .

[16]  Alexander Mattausch,et al.  Different roles of carbon and silicon interstitials in the interstitial-mediated boron diffusion in SiC , 2004 .

[17]  H. Matsunami,et al.  Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001) , 2004 .

[18]  T. Sudarshan,et al.  Investigation of boron diffusion in 6H-SiC , 2003 .

[19]  W. J. Choyke,et al.  A Shallow Acceptor Complex in 4H-SiC: AlSiNCAlSi , 2003 .

[20]  Xiaozhou Liu,et al.  Blue emission from silicon-based β-SiC films , 2003 .

[21]  S. S. Camargo,et al.  Amorphous SiC coatings for WC cutting tools , 2003 .

[22]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[23]  S. S. Camargo,et al.  Magnetron sputtered SiC coatings as corrosion protection barriers for steels , 2000 .

[24]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .

[25]  G. Pensl,et al.  Effects of C or Si co-implantation on the electrical activation of B atoms implanted in 4H–SiC , 1998 .

[26]  S. Greulich-Weber EPR and ENDOR investigations of shallow impurities in SiC polytypes , 1997 .

[27]  A. Steckl,et al.  Characterization of 3C–SiC crystals grown by thermal decomposition of methyltrichlorosilane , 1996 .

[28]  Fukumoto First-principles calculations of p-type impurities in cubic SiC. , 1996, Physical review. B, Condensed matter.

[29]  W. Suttrop,et al.  Boron-related deep centers in 6H-SiC , 1990 .