Modeling spatial uncertainty of point features in feature-based RGB-D SLAM

This paper deals with the problem of modeling spatial uncertainty of point features in feature-based RGB-D SLAM. Although the feature-based approach to SLAM is very popular, in the case of systems using RGB-D data the problem of explicit uncertainty modeling is largely neglected in the implementations. Therefore, we investigate the influence of the uncertainty models of point features on the accuracy of the estimated trajectory and map. We focus on the recent SLAM formulation employing factor graph optimization. Unlike some visual SLAM systems employing factor graph optimization that minimize the reprojection errors of features, we explicitly use depth measurements and minimize the errors in the 3-D space. The paper analyzes the impact of the information matrices used in factor graph optimization on the achieved accuracy. We introduce three different models of point feature spatial uncertainty. Then, applying the most simple model, we demonstrate in simulations how important is the influence of the spatial uncertainty model on the graph optimization results in an idealized SLAM system with perfect feature matching. A novel software tool allows us to visualize the statistical behavior of the features over time in a real SLAM system. This enables the analysis of the distribution of feature measurements employing synthetic RGB-D data processed in an actual SLAM pipeline. Finally, we show on publicly available real RGB-D datasets how an uncertainty model, which reflects the properties of the RGB-D sensor and the image processing pipeline, improves the accuracy of sensor trajectory estimation.

[1]  Michal R. Nowicki,et al.  Combining photometric and depth data for lightweight and robust visual odometry , 2013, 2013 European Conference on Mobile Robots.

[2]  Shahram Izadi,et al.  Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[3]  Luigi di Stefano,et al.  SlamDunk: Affordable Real-Time RGB-D SLAM , 2014, ECCV Workshops.

[4]  Kurt Konolige,et al.  FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping , 2008, IEEE Transactions on Robotics.

[5]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Michal R. Nowicki,et al.  On the Performance of Pose-Based RGB-D Visual Navigation Systems , 2014, ACCV.

[8]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[9]  Piotr Skrzypczynski,et al.  Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping , 2013, Ind. Robot.

[10]  Michal R. Nowicki,et al.  Accurate Map-Based RGB-D SLAM for Mobile Robots , 2015, ROBOT.

[11]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[12]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[13]  Robert M. Haralick Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[14]  Jizhong Xiao,et al.  Fast visual odometry and mapping from RGB-D data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[15]  Daniel Cremers,et al.  Volumetric 3D mapping in real-time on a CPU , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Marek Kraft,et al.  Comparative assessment of point feature detectors in the context of robot navigation , 2013 .

[17]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision: Scene planes and homographies , 2004 .

[18]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[20]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[21]  Paul Ozog,et al.  On the importance of modeling camera calibration uncertainty in visual SLAM , 2013, 2013 IEEE International Conference on Robotics and Automation.

[22]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[23]  Federico Tombari,et al.  Analysis and Evaluation Between the First and the Second Generation of RGB-D Sensors , 2015, IEEE Sensors Journal.

[24]  Jan Faigl,et al.  An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors , 2017, Ind. Robot.

[25]  Pedro Arias,et al.  Metrological evaluation of Microsoft Kinect and Asus Xtion sensors , 2013 .

[26]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[27]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[28]  Piotr Skrzypczynski,et al.  Spatial Uncertainty Management for Simultaneous Localization and Mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[29]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[30]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[32]  Alfredo Paolillo,et al.  Covariance Propagation for the Uncertainty Estimation in Stereo Vision , 2011, IEEE Transactions on Instrumentation and Measurement.

[33]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[34]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[35]  Supun Samarasekera,et al.  Stable vision-aided navigation for large-area augmented reality , 2011, 2011 IEEE Virtual Reality Conference.

[36]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[37]  Adam Schmidt,et al.  Toward evaluation of visual navigation algorithms on RGB-D data from the first- and second-generation Kinect , 2016, Machine Vision and Applications.

[38]  Partha Pratim Das,et al.  Characterizations of Noise in Kinect Depth Images: A Review , 2014, IEEE Sensors Journal.

[39]  Michel Dhome,et al.  Generic and real-time structure from motion using local bundle adjustment , 2009, Image Vis. Comput..

[40]  Yoshiaki Shirai,et al.  An Uncertainty Model of Stereo Vision and its Application to Vision-Motion Planning of Robot , 1993, IJCAI.

[41]  Moonhong Baeg,et al.  Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor , 2012, Sensors.

[42]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[43]  Michal R. Nowicki,et al.  Improving accuracy of feature-based RGB-D SLAM by modeling spatial uncertainty of point features , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Adam Schmidt,et al.  Comparative Assessment of Point Feature Detectors and Descriptors in the Context of Robot Navigation , 2013 .

[45]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Piotr Skrzypczynski,et al.  The importance of measurement uncertainty modelling in the feature-based RGB-D SLAM , 2015, 2015 10th International Workshop on Robot Motion and Control (RoMoCo).