Estimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations

[1]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Alberto Moreira,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  Thomas Jagdhuber,et al.  Multi-Frequency Estimation of Canopy Penetration Depths from SMAP/AMSR2 Radiometer and Icesat Lidar Data , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Laurent Ferro-Famil,et al.  Three-Dimensional Imaging of Objects Concealed Below a Forest Canopy Using SAR Tomography at L-Band and Wavelet-Based Sparse Estimation , 2017, IEEE Geoscience and Remote Sensing Letters.

[5]  R. Harris,et al.  Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model , 2003 .

[6]  Amanda M. Schwantes,et al.  Global satellite monitoring of climate-induced vegetation disturbances. , 2015, Trends in plant science.

[7]  Jan G. P. W. Clevers,et al.  Synergy between optical and microwave remote sensing for crop growth monitoring. , 1994 .

[8]  Emanuele Santi,et al.  The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas , 2017 .

[9]  Simon Yueh,et al.  Active–Passive Disaggregation of Brightness Temperatures During the SMAPVEX12 Campaign , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Thomas Jagdhuber,et al.  Physically-based retrieval of SMAP active-passive measurements covariation and vegetation structure parameters , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[11]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[12]  Thuy Le Toan,et al.  Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  Heather McNairn,et al.  A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring , 2016 .

[14]  S. D. M. ller,et al.  Polarisation: Applications in Remote Sensing , 2010 .

[15]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Nazzareno Pierdicca,et al.  The Copernicus L-band SAR mission ROSE-L (Radar Observing System for Europe) (Conference Presentation) , 2019, Active and Passive Microwave Remote Sensing for Environmental Monitoring III.

[17]  Mahendra Singh Nathawat,et al.  A review of radar remote sensing for biomass estimation , 2015, International Journal of Environmental Science and Technology.

[18]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Chris Derksen,et al.  Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. , 2017 .

[20]  Heather McNairn,et al.  ESTABLISHING CROP PRODUCTIVITY USING RADARSAT-2 , 2012 .

[21]  Yunjin Kim,et al.  The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[22]  W. Peake,et al.  Rayleigh scattering from leaves , 1969 .

[23]  Fabrizio Lombardini,et al.  Differential tomography: a new framework for SAR interferometry , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[25]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[26]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[27]  M. Chakraborty,et al.  Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data , 2005 .

[28]  Soon-Koo Kweon,et al.  A Modified Water-Cloud Model With Leaf Angle Parameters for Microwave Backscattering From Agricultural Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Susan C. Steele-Dunne,et al.  Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter From Maize During Water Stress , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[30]  François Jonard,et al.  Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review , 2012 .

[31]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[32]  Thomas J. Jackson,et al.  Retrieval of Wheat Growth Parameters With Radar Vegetation Indices , 2014, IEEE Geoscience and Remote Sensing Letters.

[33]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[34]  Antonino Maltese,et al.  Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized, Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization , 2017, Remote. Sens..

[35]  J. van Zyl,et al.  On the relationship between polarimetric parameters , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[36]  Irena Hajnsek,et al.  Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Heather McNairn,et al.  RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Heather McNairn,et al.  Radar Remote Sensing of Agricultural Canopies: A Review , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[39]  Irena Hajnsek,et al.  An Iterative Generalized Hybrid Decomposition for Soil Moisture Retrieval Under Vegetation Cover Using Fully Polarimetric SAR , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Michael W. Spencer,et al.  SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Roger H. Lang,et al.  Electromagnetic backscattering from a sparse distribution of lossy dielectric scatterers , 1981 .

[42]  Rocco Panciera,et al.  Evaluation of the SMAP brightness temperature downscaling algorithm using active–passive microwave observations , 2014 .

[43]  Jiancheng Shi,et al.  Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Roger H. Lang,et al.  Electromagnetic Backscattering from a Layer of Vegetation: A Discrete Approach , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Thomas Jagdhuber,et al.  Soil parameter retrieval under vegetation cover using SAR polarimetry , 2012 .

[46]  Christoph Rüdiger,et al.  Effect of Land-Cover Type on the SMAP Active/Passive Soil Moisture Downscaling Algorithm Performance , 2015, IEEE Geoscience and Remote Sensing Letters.

[47]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[48]  J. Paris,et al.  The effect of leaf size on the microwave backscattering by corn , 1986 .

[49]  M. A. Karam,et al.  Scattering from randomly oriented circular discs with application to vegetation , 1983 .

[50]  Ying Gao,et al.  Estimation of Vegetation Water Content From the Radar Vegetation Index at L-Band , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[51]  George P. Petropoulos,et al.  Satellite remote sensing of surface soil moisture , 2013 .

[52]  J. Kovacs,et al.  Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data , 2017, Remote Sensing of Environment.

[53]  V. Arora MODELING VEGETATION AS A DYNAMIC COMPONENT IN SOIL‐VEGETATION‐ATMOSPHERE TRANSFER SCHEMES AND HYDROLOGICAL MODELS , 2002 .

[54]  Irena Hajnsek,et al.  Influence of Vegetation Growth on the Polarimetric Zero-Baseline DInSAR Phase Diversity—Implications for Deformation Studies , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[56]  F. Rocca,et al.  SAR tomography for the retrieval of forest biomass and height: cross-validation at two tropical forest sites in French Guiana , 2016 .

[57]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[58]  Jean-Pierre Wigneron,et al.  Analysis of the Radar Vegetation Index and Potential Improvements , 2018, Remote. Sens..