A Fully Discrete Evolving Surface Finite Element Method

In this paper we consider a time discrete evolving surface finite element method for the advection and diffusion of a conserved scalar quantity on a moving surface. In earlier papers using a suitable variational formulation in time dependent Sobolev space we proposed and analyzed a finite element method using surface finite elements on evolving triangulated surfaces [IMA J. Numer Anal., 25 (2007), pp. 385--407; Math. Comp., to appear]. Optimal order $L^2(\Gamma(t))$ and $H^1(\Gamma(t))$ error bounds were proved for linear finite elements. In this work we prove optimal order error bounds for a backward Euler time discretization.

[1]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[2]  C. M. Elliott,et al.  The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.

[3]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[4]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[5]  Steven D. Webb,et al.  Modeling Cell Movement and Chemotaxis Using Pseudopod-Based Feedback , 2011, SIAM J. Sci. Comput..

[6]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[7]  Paul C. Fife,et al.  A phase-field model for diffusion-induced grain-boundary motion , 1997 .

[8]  Sashikumaar Ganesan,et al.  A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants , 2009, J. Comput. Phys..

[9]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[10]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[11]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[12]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[13]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[14]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[15]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[16]  Martin Rumpf,et al.  A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces , 2011, SIAM J. Numer. Anal..

[17]  Axel Voigt,et al.  A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE. , 2009, Communications in mathematical sciences.