On minimal realizations of first-degree 3D systems with separable denominators

In this paper, we focus on first-degree three-dimensional (3D) causal systems which have separable denominators. Gröbner basis is applied to prove that not all first-degree 3D systems with separable denominators have minimal realizations (of order 3). This is in contrast to 2D systems with separable denominators which always admit absolutely minimal realizations. Two illustrative examples are presented.

[1]  N. Bose Multidimensional systems theory and applications , 1995 .

[2]  Jean-François Pommaret,et al.  Relative parametrization of linear multidimensional systems , 2012, Multidimensional Systems and Signal Processing.

[3]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[4]  Thomas Kailath,et al.  Linear Systems , 1980 .

[5]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[6]  Zhiping Lin,et al.  Notes on minimal realizations of multidimensional systems , 2015, Multidimens. Syst. Signal Process..

[7]  Zhiping Lin,et al.  A Tutorial on GrÖbner Bases With Applications in Signals and Systems , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Chi-Tsong Chen,et al.  Introduction to linear system theory , 1970 .

[9]  G. E. Antoniou,et al.  Minimal state-space realization of factorable 2-D transfer functions , 1988 .

[10]  N. Bose Applied multidimensional systems theory , 1982 .

[11]  T. Hinamoto,et al.  Separable-denominator state-space realization of two-dimensional filters using a canonic form , 1981 .

[12]  Krzysztof Galkowski,et al.  State-space realisations of linear 2-D systems with extensions to the general nD (n>2) case , 2001 .

[13]  Zhiping Lin,et al.  A New Elementary Operation Approach to Multidimensional Realization and LFR Uncertainty Modeling: The MIMO Case , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Andreas Antoniou,et al.  Two-Dimensional Digital Filters , 2020 .

[15]  Zhiping Lin,et al.  A direct-construction approach to multidimensional realization and LFR uncertainty modeling , 2008, Multidimens. Syst. Signal Process..

[16]  Bruno Buchberger,et al.  Gröbner Bases and Systems Theory , 2001, Multidimens. Syst. Signal Process..