Simplification Orderings: Histrory of Results

We focus on termination proof techniques for unconditional term rewriting systems using simplification orderings. Throughout the last few years numerous (simplification) orderings have been defined by various authors. This paper provides an overview on different aspects of these techniques. Additionally, we introduce a formalism that allows clear representations of orderings.

[1]  Ursula Martin,et al.  How to Choose Weights in the Knuth Bendix Ordering , 1987, RTA.

[2]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[3]  Bernhard Gramlich,et al.  Simple Termination is Difficult , 1993, RTA.

[4]  Joachim Steinbach,et al.  Improving Assoviative Path Orderings , 1990, CADE.

[5]  Bernhard Gramlich Generalized Sufficient Conditions for Modular Termination of Rewriting , 1992, ALP.

[6]  Jean H. Gallier,et al.  What's So Special About Kruskal's Theorem and the Ordinal Gamma0? A Survey of Some Results in Proof Theory , 1991, Ann. Pure Appl. Log..

[7]  Dieter Hofbauer Termination Proofs by Multiset Path Orderings Imply Primitive Recursive Derivation Lengths , 1992, Theor. Comput. Sci..

[8]  David Detlefs,et al.  A Procedure for Automatically Proving the Termination of a Set of Rewrite Rules , 1985, RTA.

[9]  Pierre Lescanne,et al.  Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation , 1987, Sci. Comput. Program..

[10]  Renato Iturriaga CONTRIBUTIONS TO MECHANICAL MATHEMATICS. , 1967 .

[11]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[12]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Jean-Pierre Jouannaud,et al.  Recursive Decomposition Ordering , 1982, Formal Description of Programming Concepts.

[14]  Laurence Puel,et al.  Extension of the Associative Path Ordering to a Chain of Associative Commutative Symbols , 1993, RTA.

[15]  Azuma Ohuchi,et al.  30周年記念論文 佳作:Modularity of Simple Termination of Term Rewriting Systems , 1990 .

[16]  Hélène Kirchner,et al.  Completion of a Set of Rules Modulo a Set of Equations , 1986, SIAM J. Comput..

[17]  Michaël Rusinowitch,et al.  Any Gound Associative-Commutative Theory Has a Finite Canonical System , 1991, RTA.

[18]  Pierre Lescanne Uniform Termination of Term Rewriting Systems: Recursive Decomposition Ordering with Status , 1984, CAAP.

[19]  Paliath Narendran,et al.  On Recursive Path Ordering , 1985, Theor. Comput. Sci..

[20]  Max Dauchet,et al.  Termination of Rewriting is Undecidable in the One-Rule Case , 1988, MFCS.

[21]  David A. Plaisted,et al.  Polynomial Time Termination and Constraint Satisfaction Tests , 1993, RTA.

[22]  Alberto Pettorossi Comparing and Putting Together Recursive Path Ordering, Simplification Orderings and Non-Ascending Property for Termination Proofs of Term Rewriting Systems , 1981, ICALP.

[23]  J. Paris,et al.  Accessible Independence Results for Peano Arithmetic , 1982 .

[24]  Isabelle Gnaedig Preuves de terminaison des systèmes de réécriture associatifs commutatifs : Une méthode fondée sur la réécriture elle-même , 1986 .

[25]  Ursula Martin,et al.  The order types of termination orderings on monadic terms, strings and multisets , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[26]  David A. Plaisted,et al.  A Simple Non-Termination Test for the Knuth-Bendix Method , 1986, CADE.

[27]  Gérard Huet,et al.  On the Uniform Halting Problem for Term Rewriting Systems , 1978 .

[28]  Deepak Kapur,et al.  A New Method for Proving Termination of AC-Rewrite Systems , 1990, FSTTCS.

[29]  Isabelle Gnaedig,et al.  Proving Termination of Associative Commutative Rewriting Systems by Rewriting , 1986, CADE.

[30]  Nachum Dershowitz,et al.  Path Orderings for Termination of Associative-Commutative Rewriting , 1992, CTRS.

[31]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[32]  Hans Zantema,et al.  Termination of Term Rewriting by Interpretation , 1992, CTRS.

[33]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[34]  Joachim Steinbach,et al.  Extensions and Comparison of Simplification Orderings , 1989, RTA.

[35]  Nachum Dershowitz,et al.  Proof-theoretic techniques for term rewriting theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[36]  Joachim Steinbach,et al.  AC-Termination of Rewrite Systems: A Modified Knuth-Bendix Ordering , 1990, ALP.

[37]  Nachum Dershowitz,et al.  A Note on Simplification Orderings , 1979, Inf. Process. Lett..

[38]  Dieter Hofbauer Time Bounded Rewrite Systems and Termination Proofs by Generalized Embedding , 1991, RTA.

[39]  Albert Rubio,et al.  A Precedence-Based Total AC-Compatible Ordering , 1993, RTA.

[40]  Hassan Aït-Kaci,et al.  An Algorithm for Finding A Minimal Recursive Path Ordering , 1985, RAIRO Theor. Informatics Appl..

[41]  Nachum Dershowitz,et al.  Commutation, Transformation, and Termination , 1986, CADE.

[42]  Martin D. Davis Hilbert's Tenth Problem is Unsolvable , 1973 .

[43]  Dieter Hofbauer,et al.  Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.

[44]  Jean-Pierre Jouannaud,et al.  Termination of a Set of Rules Modulo a Set of Equations , 1984, CADE.

[45]  Pierre Lescanne Termination of Rewrite Systems by Elementary Interpretations , 1992, ALP.

[46]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[47]  Joachim Steinbach Proving Polynomials Positive , 1992, FSTTCS.

[48]  Leo Bachmair Associative-Commutative Reduction Orderings , 1992, Inf. Process. Lett..

[49]  Michaël Rusinowitch Path of Subterms Ordering and Recursive Decomposition Ordering Revisited , 1985, RTA.

[50]  Nachum Dershowitz,et al.  Topics in Termination , 1993, RTA.

[51]  Wayne Snyder,et al.  On the Complexity of Recursive Path Orderings , 1993, Inf. Process. Lett..

[52]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[53]  Ursula Martin,et al.  Linear Interpretations by Counting Patterns , 1993, RTA.

[54]  Pierre Lescanne,et al.  Polynomial Interpretations and the Complexity of Algorithms , 1992, CADE.

[55]  David A. Plaisted,et al.  The Undecidability of Self-Embedding for Term Rewriting Systems , 1985, Inf. Process. Lett..

[56]  Hans Zantema,et al.  Simple Termination Revisited , 1994, CADE.

[57]  Ursula Martin,et al.  A Geometrical Approach to Multiset Orderings , 1989, Theor. Comput. Sci..

[58]  G. Huet,et al.  Equations and rewrite rules: a survey , 1980 .

[59]  R. Forgaard A PROGRAM FOR GENERATING AND ANALYZING TERM REWRITING SYSTEMS , 1984 .

[60]  LEO BACHMAIR,et al.  Termination Orderings for Associative-Commutative Rewriting Systems , 1985, J. Symb. Comput..

[61]  Mandayam K. Srivas,et al.  Function Definitions in Term Rewriting and Applicative Programming , 1986, Inf. Control..

[62]  Pierre Lescanne,et al.  Decomposition Ordering as a Tool to Prove the Termination of Rewriting Systems , 1981, IJCAI.

[63]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[64]  Nachum Dershowitz,et al.  Associative-Commutative Rewriting , 1983, IJCAI.

[65]  Leo Bachmair Proof methods for equational theories , 1987 .

[66]  Aart Middeldorp,et al.  A sufficient condition for the termination of the direct sum of term rewriting systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[67]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .