Given a pair of non-negative integers <i>m</i> and <i>n, P</i>(<i>m, n</i>) denotes a subset of 2-dimensional triangular lattice points defined by <i>P</i>(<i>m, n</i>) [EQUATION], {(<i>xe</i><inf>1</inf> +<i>ye</i><inf>2</inf> | <i>x</i> ∈ {0, 1,..., <i>m</i> -1}, <i>y</i> ∈ {0, 1,..., <i>n</i> -1}} where <i>e</i><inf>1</inf> [EQUATION] (1,0), <i>e</i><inf>2</inf> [EQUATION] (1/2, √3/2). Let <i>T</i><inf><i>m,n</i></inf><i>(d)</i> be an undirected graph defined on vertex set <i>P(m, n)</i> satisfying that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to <i>d.</i> This paper discusses a necessary and sufficient condition that <i>Tm,n</i>(<i>d</i>) is perfect; we show that [∀<i>m</i> ∈ Z<inf>+</inf> <i>T</i><inf><i>m,n</i></inf>(<i>d</i>) is perfect ] if and only if <i>d</i> ≥ √<i>n</i><sup>2</sup> -3<i>n</i> + 3.Given a non-negative vertex weight vector <i>w</i> ∈ <i>Z</i><sup><i>p</i>(<i>m,n</i>)</sup><inf>+</inf> a multicoloring of (<i>T</i><inf><i>m,n</i></inf>(<i>d</i>), ω) is an assignment of colors to <i>P(m, n)</i> such that each vertex <i>v</i> ∈ <i>P(m, n)</i> admits <i>w(v)</i> colors and every adjacent pair of two vertices does not share a common color. We also give an efficient algorithm for multicoloring (<i>Tm, n</i> (<i>d</i>), <i>w</i>) when <i>P</i>(<i>m, n</i>) is perfect.In general case, our results on the perfectness of <i>P</i>(<i>m, n</i>) implies a polynomial time approximation algorithm for multicoloring (<i>T<inf>m, n</inf></i> (<i>d), w</i>). Our algorithm finds a multicoloring which uses at most α(<i>d</i>ω + O(<i>d</i><sup>3</sup>) colors, where ω denotes the weighted clique number. When <i>d</i> = 1, √3, 2, √7, 3, the approximation ratio α(<i>d</i>) = (4/3), (5/3), (7/4), (5/3), (7/4), respectively. When <i>d</i> > 1, we showed that α(<i>d</i>) ≤ (1 + 2/√3 +2√3-3/d) < 1 + 2/√3 < 2.155.
[1]
Jue Xue,et al.
Solving the Minimum Weighted Integer Coloring Problem
,
1998,
Comput. Optim. Appl..
[2]
M. R. Rao,et al.
Combinatorial Optimization
,
1992,
NATO ASI Series.
[3]
Harry B. Hunt,et al.
Simple heuristics for unit disk graphs
,
1995,
Networks.
[4]
C. McDiarmid,et al.
Discrete Mathematics and Radio Channel Assignment
,
2003
.
[5]
William J. Cook,et al.
Combinatorial optimization
,
1997
.
[6]
Dorit S. Hochbaum,et al.
Various notions of approximations: good, better, best, and more
,
1996
.
[7]
M. Golummc.
Algorithmic graph theory and perfect graphs
,
1980
.
[8]
D. de Werra,et al.
Heuristics for graph coloring
,
1989
.
[9]
R. P. Dilworth,et al.
A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS
,
1950
.
[10]
Guy Kortsarz,et al.
Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees
,
2002,
J. Algorithms.
[11]
P. Seymour,et al.
The Strong Perfect Graph Theorem
,
2002,
math/0212070.
[12]
M. Golumbic.
Algorithmic graph theory and perfect graphs
,
1980
.
[13]
Lata Narayanan,et al.
Static Frequency Assignment in Cellular Networks
,
2001,
Algorithmica.
[14]
B. Reed,et al.
Channel Assignment and Weighted Coloring
,
2000
.
[15]
Tomomi Matsui,et al.
LINEAR TIME APPROXIMATION ALGORITHM FOR MULTICOLORING LATTICE GRAPHS WITH DIAGONALS
,
2004
.
[16]
Dorit S. Hochbaum,et al.
Approximation Algorithms for NP-Hard Problems
,
1996
.
[17]
J. G. Pierce,et al.
Geometric Algorithms and Combinatorial Optimization
,
2016
.
[18]
Dorit S. Hochbaum,et al.
Efficient bounds for the stable set, vertex cover and set packing problems
,
1983,
Discret. Appl. Math..
[19]
Tomás Feder,et al.
Online Channel Allocation in FDMA Networks with Reuse Constraints
,
1998,
Inf. Process. Lett..