Femtosecond Circular Photon Drag Effect in the Ag/Pd Nanocomposite

We report on the observation of the helicity-dependent photoresponse of the 20-μm-thick silver–palladium (Ag/Pd) nanocomposite films. In the experiment, 120 fs pulses of Ti:S laser induced in the film an electric current perpendicular to the incidence plane. The photoinduced current is a linear function of the incident beam power, and its sign depends on the beam polarization and angle of incidence. In particular, the current is zero for the p- and s-polarized beams, while its sign is opposite for the right- and left-circularly polarized beams. By comparing experimental results with theoretical analysis, we show that the photoresponse of the Ag/Pd nanocomposite originates from the photon drag effect.

[1]  W. Ge,et al.  Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas. , 2006, Physical review letters.

[2]  Bin Liu,et al.  Circular photogalvanic effect at inter-band excitation in InN , 2008 .

[3]  Weber,et al.  Resonance-Raman and lattice-dynamics studies of single-crystal PdO. , 1991, Physical review. B, Condensed matter.

[4]  E. Ivchenko,et al.  Conversion of spin into directed electric current in quantum wells. , 2001, Physical review letters.

[5]  G. E. Pikus,et al.  “Circular” photogalvanic effect in optically active crystals , 1979 .

[6]  S. N. Danilov,et al.  Spin photocurrents and the circular photon drag effect in (110)-grown quantum well structures , 2007 .

[7]  A. S. Saushin,et al.  Effect of the burning temperature on the phase composition, photovoltaic response, and electrical properties of Ag/Pd resistive films , 2014 .

[8]  P. Winsemius,et al.  Temperature dependence of the optical properties of Au, Ag and Cu , 1976 .

[9]  V. V. Vanyukov,et al.  Helicity-dependent photocurrent in the resistive Ag/Pd films excited by IR laser radiation , 2015 .

[10]  Gurevich,et al.  Photomagnetism of metals: Microscopic theory of the photoinduced surface current. , 1993, Physical review. B, Condensed matter.

[11]  Shuying Cheng,et al.  Spectra of circular and linear photogalvanic effect at inter-band excitation in In0.15Ga0.85As/Al0.3Ga0.7As multiple quantum wells , 2013 .

[12]  Yuri Svirko,et al.  Polarization-sensitive photoresponse of nanographite , 2011 .

[13]  Teruya Ishihara,et al.  Transverse photovoltage induced by circularly polarized light. , 2009, Physical review letters.

[14]  S. N. Danilov,et al.  Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a CO(2) laser , 2011, 1105.6262.

[15]  Teruya Ishihara,et al.  Surface plasmon drag effect in a dielectrically modulated metallic thin film. , 2012, Optics express.

[16]  Helicity dependent photocurrent enabled by unpolarized radiation in a GaAs/Al0.3Ga0.7As two-dimensional electron system , 2013 .

[17]  V. M. Styapshin,et al.  Spectral dependence of circular photocurrent in silver-palladium resistive films , 2014 .

[18]  Sergey Ganichev,et al.  Spin photocurrents in quantum wells , 2003 .

[19]  V. Shalygin,et al.  Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures , 2008, 0810.1205.

[20]  A. C. Walker,et al.  PHOTON DRAG IN GERMANIUM , 1970 .

[21]  R. G. Zonov,et al.  Quick-response film photodetector of high-power laser radiation based on the optical rectification effect , 2006 .

[22]  M. D. Moldavskaya,et al.  Circular photon drag effect in bulk tellurium , 2015, 1510.04018.

[23]  E. Ivchenko Circular photogalvanic effect in nanostructures , 2002 .

[24]  A. Nasibulin,et al.  Photon-drag effect in single-walled carbon nanotube films. , 2012, Nano letters.

[25]  K. Teo,et al.  Anomalous circular photogalvanic effect of the spin-polarized two-dimensional electron gas in Mg0.2Zn0.8O/ZnO heterostructures at room temperature , 2013 .

[26]  C. R. Crowell,et al.  Attenuation Length Measurements of Hot Electrons in Metal Films , 1962 .

[27]  E. Ivchenko,et al.  Photogalvanic effects in quantum wells , 2002 .

[28]  N. Noginova,et al.  Plasmon drag effect in metal nanostructures , 2013, CLEO: 2013.

[29]  Michael B. Santos,et al.  Photoinduced spin-polarized current in InSb-based structures , 2009 .

[30]  R. Zhang,et al.  Observation of the surface circular photogalvanic effect in InN films , 2009 .

[31]  A. S. Saushin,et al.  Photon-drag in single-walled carbon nanotube and silver-palladium films: the effect of polarization , 2015 .

[32]  Junjie Yu,et al.  Room-temperature spin photocurrent spectra at interband excitation and comparison with reflectance-difference spectroscopy in InGaAs/AlGaAs quantum wells , 2011 .

[33]  R. Rosenberg,et al.  Thick-film Technology: An Introduction to the Materials , 1980 .

[34]  S. D. Ganichev,et al.  High frequency electric field induced nonlinear effects in graphene , 2013, 1306.2049.

[35]  John G. Pepin,et al.  Silver‐Palladium Thick‐Film Conductors , 1994 .

[36]  Sigg,et al.  Observation of resonant photon drag in a two-dimensional electron gas. , 1990, Physical review letters.

[37]  Teruya Ishihara,et al.  Photo-induced voltage in nano-porous gold thin film. , 2014, Optics express.

[38]  R. Yakimova,et al.  Dynamic Hall effect driven by circularly polarized light in a graphene layer. , 2010, Physical review letters.