Evolution of reaction centers in photosynthetic prokaryotes.
暂无分享,去创建一个
[1] M. Veenhuis,et al. A new prokaryote containing chlorophylls a and b , 1986, Nature.
[2] L. H. Grimme,et al. Pigment composition of the photosynthetic membrane and reaction center of the green bacterium Prosthecochloris aestuarii , 1986 .
[3] J. Olson,et al. Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola , 1986 .
[4] J. Olson,et al. A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. , 1986, Biochimica et biophysica acta.
[5] A. Hoff,et al. Electron transport components of Heliobacterium chlorum investigated by EPR spectroscopy at 9 and 35 GHz , 1986 .
[6] G. Dismukes. THE METAL CENTERS OF THE PHOTOSYNTHETIC OXYGEN‐EVOLVING COMPLEX * , 1986 .
[7] J. Deisenhofer,et al. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.
[8] Robert Eugene Blankenship,et al. Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum , 1985 .
[9] H. Senger,et al. Evidence for chlorophyll RC I in cyanobacteria , 1985 .
[10] S. Anemüller,et al. The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium , 1985 .
[11] D. Zannoni,et al. A thermodynamic analysis of the plasma membrane electron transport components in photoheterotrophically grown cells of Chloroflexus aurantiacus , 1985 .
[12] Tadashi Watanabe,et al. Evidence that a chlorophyll a' dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus , 1985 .
[13] R. Nechushtai,et al. Purification and composition of photosystem I reaction center of Prochloron sp., an oxygen‐evolving prokaryote containing chlorophyll b , 1985 .
[14] J. Amesz,et al. Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium chlorum. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[15] R. Heath,et al. Photosynthetic water oxidation , 1985, FEBS letters.
[16] J. Amesz,et al. Antenna organization and energy transfer in membranes of Heliobacterium chlorum , 1985 .
[17] W. Ludwig,et al. The Phylogeny of the Green Photosynthetic Bacteria: Absence of a Close Relationship Between Chlorobium and Chloroflexus , 1985 .
[18] A. Verméglio,et al. Structure of Chloroflexus aurantiacus reaction center: Photoselection at low temperature , 1985 .
[19] J. Barber,et al. Isolation and characterisation of a photosystem II reaction centre lipoprotein complex , 1985 .
[20] H. Michel,et al. The ‘heavy’ subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence , 1985, The EMBO journal.
[21] R. Wynn,et al. The membrane-bound electron-transfer components of aerobically grown Chromatium vinosum , 1985 .
[22] J. Lake,et al. Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[23] Jeanette S. Brown,et al. Three photosynthetic antenna porphyrins in a primitive green alga , 1985 .
[24] M. Walsh,et al. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa , 1985, Nature.
[25] Robert Eugene Blankenship,et al. A unique photosynthetic reaction center from Heliobacterium chlorum , 1985 .
[26] H. Zuber,et al. The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus , 1985 .
[27] A. Glazer,et al. Characterization of a cyanobacterial photosystem I complex. , 1985, The Journal of biological chemistry.
[28] W. Ludwig,et al. Gram-positive bacteria: possible photosynthetic ancestry. , 1984, Science.
[29] A. Glazer,et al. Light harvesting by phycobilisomes. , 1985, Annual review of biophysics and biophysical chemistry.
[30] A. Knoll. The distribution and evolution of microbial life in the Late Proterozoic era. , 1985, Annual review of microbiology.
[31] R. Rippka,et al. Division patterns and cellular differentiation in cyanobacteria. , 1985, Annales de l'Institut Pasteur. Microbiologie.
[32] J. P. Houchins. The physiology and biochemistry of hydrogen metabolism in cyanobacteria , 1984 .
[33] Robert Eugene Blankenship. PRIMARY PHOTOCHEMISTRY IN GREEN PHOTOSYNTHETIC BACTERIA , 1984 .
[34] J Deisenhofer,et al. X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.
[35] C R Woese,et al. The phylogeny of purple bacteria: the alpha subdivision. , 1984, Systematic and applied microbiology.
[36] M. Taylor,et al. Reconstitution of purified halorhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[37] J. Imhoff. Reassignment of the Genus Ectothiorhodospira Pelsh 1936 to a New Family, Ectothiorhodospiraceae fam. nov., and Emended Description of the Chromatiaceae Bavendamm 1924 , 1984 .
[38] J. Imhoff,et al. Rearrangement of the Species and Genera of the Phototrophic “Purple Nonsulfur Bacteria” , 1984 .
[39] J. Hearst,et al. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata , 1984, Cell.
[40] A. Glazer. Phycobilisome a macromolecular complex optimized for light energy transfer , 1984 .
[41] E. Hurt,et al. Purification of membrane‐bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum , 1984 .
[42] D. Mauzerall,et al. PHOTOCHEMISTRY OF PORPHYRINS: A MODEL FOR THE ORIGIN OF PHOTOSYNTHESIS * , 1984, Photochemistry and photobiology.
[43] S. Giovannoni,et al. Physiological Ecology of a Gliding Bacterium Containing Bacteriochlorophyll a , 1984, Applied and Environmental Microbiology.
[44] B. Diner,et al. Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides , 1984 .
[45] G. Vidal. The oldest eukaryotic cells. , 1984, Scientific American.
[46] R. Bachofen,et al. A single subunit P‐700 reaction center of the thermophilic cyanobacterium Mastigocladus laminosus , 1984 .
[47] C R Woese,et al. The phylogeny of prokaryotes. , 1980, Microbiological sciences.
[48] T. Shiba. UTILIZATION OF LIGHT ENERGY BY THE STRICTLY AEROBIC BACTERIUM ERYTHROBACTER SP. OCH 114 , 1984 .
[49] R. Herrmann,et al. Localization of the genes for the two chlorophyll a‐conjugated polypeptides (mol. wt. 51 and 44 kd) of the photosystem II reaction center on the spinach plastid chromosome , 1983, The EMBO journal.
[50] K. Fiebig,et al. Distribution of cytochromes in methanogenic bacteria , 1983 .
[51] G. Feher,et al. Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[52] S. Scherer. Basic functional states in the evolution of light-driven cyclic electron transport , 1983 .
[53] A. Jongenelis,et al. The triplet state of the primary donor of the green photosynthetic bacterium Chloroflexus aurantiacus , 1983 .
[54] R. Thauer,et al. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum. , 1983, European journal of biochemistry.
[55] A. Hoff,et al. High-resolution absorbance-difference spectra of the triplet state of the primary donor P-700 in Photosystem I subchloroplast particles measured with absorbance-detected magnetic resonance at 1.2 K. Evidence that P-700 is a dimeric chlorophyll complex , 1983 .
[56] J. Amesz,et al. Photoreduction of menaquinone in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacus , 1983 .
[57] Robert Eugene Blankenship,et al. Picosecond measurements of the primary photochemical events in reaction centers isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus , 1983 .
[58] Robert Eugene Blankenship,et al. Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus , 1983 .
[59] B. Pierson,et al. Partial purification, subunit structure and thermal stability of the photochemical reaction center of the thermophilic green bacterium Chloroflexus aurantiacus , 1983 .
[60] A. Cairns-smith,et al. Photo-oxidation of hydrated Fe2+—significance for banded iron formations , 1983, Nature.
[61] JAMES C. G. Walker,et al. Possible limits on the composition of the Archaean ocean , 1983, Nature.
[62] R. Nechushtai,et al. Photosystem I reaction center from the thermophilic cyanobacterium Mastigocladus laminosus. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[63] F. Rodríguez-Valera,et al. Light as an Energy Source in Continuous Cultures of Bacteriorhodopsin-Containing Halobacteria , 1983, Applied and environmental microbiology.
[64] R. Cogdell,et al. Pigment‐protein complexes of purple photosynthetic bacteria: An overview , 1983, Journal of cellular biochemistry.
[65] B. Pierson,et al. Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[66] Robert Eugene Blankenship,et al. Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus , 1983, Journal of cellular biochemistry.
[67] M. Wasielewski,et al. ESR study of the primary electron donor in highly 13C‐enriched Chlorobium limicola f. thiosulfatophilum , 1982 .
[68] Y. Takahashi,et al. Functional subunit structure of photosystem 1 reaction center in Synechococcus sp. , 1982, Archives of biochemistry and biophysics.
[69] Robert Eugene Blankenship,et al. Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. , 1982, Proceedings of the National Academy of Sciences of the United States of America.
[70] L. Natarajan,et al. Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus , 1982 .
[71] U. Simidu,et al. Erythrobacter longus gen. nov., sp. nov., an Aerobic Bacterium Which Contains Bacteriochlorophyll a , 1982 .
[72] E. Stackebrandt,et al. Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron , 1982, Nature.
[73] R. Thauer,et al. Nickel requirement and factor F430 content of methanogenic bacteria , 1981, Journal of bacteriology.
[74] L. Staehelin,et al. Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus , 1981, Journal of bacteriology.
[75] R. Thauer,et al. Incorporation of methionine‐derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum , 1981 .
[76] J. Olson,et al. Evolution of photosynthetic reaction centers. , 1981, Bio Systems.
[77] J. Olson. Chlorophyll organization in green photosynthetic bacteria. , 1980, Biochimica et biophysica acta.
[78] D. Oesterhelt,et al. Anaerobic growth of halobacteria. , 1980, Proceedings of the National Academy of Sciences of the United States of America.
[79] L. Staehelin,et al. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. , 1980, Biochimica et biophysica acta.
[80] E. Padan. Facultative Anoxygenic Photosynthesis in Cyanobacteria , 1979 .
[81] J. Olson,et al. The light‐reaction of the green photosynthetic bacterium Chlorobium limicola f. thiosulfatophilum at cryogenic temperatures , 1979, FEBS letters.
[82] J. Olson. Precambrian Evolution of Photosynthetic and Respiratory Organisms , 1978 .
[83] M. Madigan,et al. CO2 fixation in photosynthetically-grown Celoroflexus aurantiacus , 1977 .
[84] E. Padan,et al. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria , 1977, Journal of bacteriology.
[85] R. Lewin. Prochlorophyta as a proposed new division of algae , 1976, Nature.
[86] J. Schopf. Paleobiology of the Precambrian: The Age of Blue-Green Algae , 1974 .
[87] K. Takamiya. The light-induced oxidation-reduction reactions of menaquinone in intact cells of a green photosynthetic bacterium, Chloropseudomonas ethylica. , 1971, Biochimica et biophysica acta.
[88] T. Reimer,et al. Sulfur Isotopes in Swaziland System Barites and the Evolution of the Earth's Atmosphere , 1971, Science.
[89] K. S. Cheah. Properties of the membrane-bound respiratory chain system of Halobacterium salinarium. , 1970, Biochimica et biophysica acta.
[90] J. Olson. The evolution of photosynthesis. , 1970, Science.
[91] C. Houssier,et al. Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments , 1970 .
[92] J. Lanyi. Studies of the electron transport chain of extremely halophilic bacteria. I. Spectrophotometric identification of the cytochromes of Halobacterium cutirubrum. , 1968, Archives of biochemistry and biophysics.
[93] J. Smith,et al. The Dimerization of Chlorophyll a, Chlorophyll b, and Bacteriochlorophyll in Solution1 , 1966 .
[94] O. Jones. The production of magnesium protoporphyrin monomethyl ester by Rhodopseudomonas spheroides. , 1963, The Biochemical journal.