Multifunctional Properties of Alumina Composites Reinforced by a Hybrid Filler

Hybrid microstructure design has been used to fabricate alumina composites reinforced by 5 vol% of multiwalled carbon nanotube (MWNT) together with different (1, 2, 3 vol%) contents of SiC nanoparticles by spark plasma sintering. The mechanical, thermal, and electrical properties of the composites were determined as a function of the SiC volume fraction. The thermal conductivity decreased for 1 and 2 vol% of SiC, while for 3 vol%, it increased. Substantial improvements in the fracture toughness, bending strength, and electrical conductivity were observed and attributed to a synergetic effect of the MWNT and SiC nanoparticles in the hybrid microstructure design.

[1]  Wei Wei,et al.  Macrostructural influence on the thermoelectric properties of SiC ceramics , 2007 .

[2]  X. Lou,et al.  Multiwalled carbon Nanotube/Poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties , 2007 .

[3]  Q. Xue,et al.  The interface effect of the effective electrical conductivity of carbon nanotube composites , 2007 .

[4]  R. Poyato,et al.  Single-wall carbon nanotubes at ceramic grain boundaries , 2007 .

[5]  W. Pan,et al.  Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering , 2007 .

[6]  Wei Pan,et al.  Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites , 2006 .

[7]  M. Herrmann,et al.  The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide , 2006 .

[8]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[9]  Lidong Chen,et al.  Effect of Interfacial Thermal Resistance on Effective Thermal Conductivity of MoSi2/SiC Composites , 2006 .

[10]  T. Nishimura,et al.  Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics , 2006, Nanotechnology.

[11]  Longxin Chen,et al.  High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS , 2006 .

[12]  Jun-Kwang Song,et al.  Preparation and Microstructure of Multi‐Wall Carbon Nanotubes‐Toughened Al2O3 Composite , 2006 .

[13]  S. Hong,et al.  Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process , 2005 .

[14]  P. Keblinski,et al.  On the lack of thermal percolation in carbon nanotube composites , 2005 .

[15]  S. Roberts,et al.  Effects of Yttrium on the Sintering and Microstructure of Alumina–Silicon Carbide “Nanocomposites” , 2005 .

[16]  H. Kim,et al.  Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid‐treated multiwalled carbon nanotube composites prepared by in situ polymerization , 2005 .

[17]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[18]  Jing Sun,et al.  Sintering and thermal properties of multiwalled carbon nanotube–BaTiO3 composites , 2005 .

[19]  A. Mukherjee,et al.  Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties , 2005 .

[20]  H. Awaji,et al.  Nanocomposites—a new material design concept , 2005 .

[21]  Jing Sun,et al.  Reinforcement of alumina matrix with multi-walled carbon nanotubes , 2005 .

[22]  W. Pan,et al.  Effect of Composition on Properties of Alumina/Titanium Silicon Carbide Composites , 2004 .

[23]  William A. Curtin,et al.  CNT-reinforced ceramics and metals , 2004 .

[24]  Kozo Ishizaki,et al.  Microstructural characterization of high-thermal-conductivity SiC ceramics , 2004 .

[25]  S. Hong,et al.  Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process , 2004 .

[26]  N. Padture,et al.  Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites , 2004, Nature materials.

[27]  William A. Curtin,et al.  Fracture toughness of highly ordered carbon nanotube/alumina nanocomposites , 2004 .

[28]  B. Sheldon,et al.  Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites , 2004 .

[29]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[30]  A. Mukherjee,et al.  Nanocrystalline- Matrix Ceramic Composites for Improved Fracture Toughness , 2004 .

[31]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[32]  Joshua D. Kuntz,et al.  Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes , 2003 .

[33]  A. Mukherjee,et al.  Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites , 2003, Nature materials.

[34]  Jing Sun,et al.  Colloidal Processing of Carbon Nanotube/Alumina Composites , 2002 .

[35]  D. Sciti,et al.  Microstructure and properties of alumina-SiC nanocomposites prepared from ultrafine powders , 2002 .

[36]  H. Awaji,et al.  Mechanisms of toughening and strengthening in ceramic-based nanocomposites , 2002 .

[37]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[38]  P. Ajayan,et al.  Mechanical behavior of polymer and ceramic matrix nanocomposites , 2001 .

[39]  Y. Yamauchi,et al.  Grain boundary strength in non-cubic ceramic polycrystals with misfitting intragranular inclusions (nanocomposites) , 2000 .

[40]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[41]  H. S. Ferreira,et al.  Liquid phase sintering of Al2O3/SiC nanocomposites , 1999 .

[42]  R. Todd,et al.  Microstructural requirements for alumina–SiC nanocomposites , 1999 .

[43]  Y. Ando,et al.  Physical properties of multiwalled carbon nanotubes , 1999 .

[44]  A. Krell,et al.  Alumina tools for machining chilled cast iron, hardened steel , 1999 .

[45]  R. Brook,et al.  Neutron diffraction measurements of residual stresses in alumina/SiC nanocomposites , 1997 .

[46]  R. Stevens,et al.  Thermal Diffusivity/Conductivity of Magnesium Oxide/Silicon Carbide Composites , 1997 .

[47]  D. Brandon,et al.  Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness of Alumina–SiC “Nanocomposites” , 1995 .