Reference frames for representing visual and tactile locations in parietal cortex

The ventral intraparietal area (VIP) receives converging inputs from visual, somatosensory, auditory and vestibular systems that use diverse reference frames to encode sensory information. A key issue is how VIP combines those inputs together. We mapped the visual and tactile receptive fields of multimodal VIP neurons in macaque monkeys trained to gaze at three different stationary targets. Tactile receptive fields were found to be encoded into a single somatotopic, or head-centered, reference frame, whereas visual receptive fields were widely distributed between eye- to head-centered coordinates. These findings are inconsistent with a remapping of all sensory modalities in a common frame of reference. Instead, they support an alternative model of multisensory integration based on multidirectional sensory predictions (such as predicting the location of a visual stimulus given where it is felt on the skin and vice versa). This approach can also explain related findings in other multimodal areas.

[1]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[2]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[3]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses , 1981, Behavioural Brain Research.

[4]  Juhani Hyva¨rinen Regional distribution of functions in parietal association area 7 of the monkey , 1981, Brain Research.

[5]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses , 1981, Behavioural Brain Research.

[6]  J Hyvärinen,et al.  Regional distribution of functions in parietal association area 7 of the monkey. , 1981, Brain research.

[7]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E P Gardner,et al.  Somatosensory evoked potentials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys. , 1984, Electroencephalography and clinical neurophysiology.

[9]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[10]  A M Graybiel,et al.  The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus , 1985, The Journal of comparative neurology.

[11]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[12]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[13]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  David L. Sparks,et al.  Sensori-motor integration in the primate superior colliculus , 1991 .

[15]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[16]  B. Stein,et al.  The Merging of the Senses , 1993 .

[17]  Leslie G. Ungerleider,et al.  Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys , 1993, Visual Neuroscience.

[18]  G. S. Russo,et al.  Frontal eye field activity preceding aurally guided saccades. , 1994, Journal of neurophysiology.

[19]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[20]  R. Andersen Encoding of intention and spatial location in the posterior parietal cortex. , 1995, Cerebral cortex.

[21]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[22]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[23]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[24]  C. Gross,et al.  The representation of extrapersonal space: A possible role for bimodal, visual-tactile neurons , 1995 .

[25]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[26]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[27]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[28]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[29]  M. Wallace,et al.  Representation and integration of multiple sensory inputs in primate superior colliculus. , 1996, Journal of neurophysiology.

[30]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[31]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[32]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[33]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[34]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[35]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[36]  G. Orban,et al.  Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. , 1999, Journal of neurophysiology.

[37]  F Bremmer,et al.  Eye position encoding in the macaque ventral intraparietal area (VIP). , 1999, Neuroreport.

[38]  C. Gross,et al.  A neuronal representation of the location of nearby sounds , 1999, Nature.

[39]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[40]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[41]  S. Inati,et al.  Eye Position Influences Auditory Responses in Primate Inferior Colliculus , 2001, Neuron.

[42]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[43]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[44]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[45]  Frank Bremmer,et al.  Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP) , 2002, The European journal of neuroscience.

[46]  John M. Allman,et al.  The Effect of Gaze Angle and Fixation Distance on the Responses of Neurons in V1, V2, and V4 , 2002, Neuron.

[47]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[48]  Tirin Moore,et al.  Complex movements evoked by microstimulation of the ventral intraparietal area , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Angela Sirigu,et al.  Spatial Coding of the Predicted Impact Location of a Looming Object , 2004, Current Biology.

[50]  Driss Boussaoud,et al.  Effects of gaze on apparent visual responses of frontal cortex neurons , 2004, Experimental Brain Research.

[51]  G. Rizzolatti,et al.  Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position , 2004, Experimental Brain Research.

[52]  G. Rizzolatti,et al.  Space coding by premotor cortex , 2004, Experimental Brain Research.

[53]  S. Sterbing-D’Angelo,et al.  Behavioral/systems/cognitive Multisensory Space Representations in the Macaque Ventral Intraparietal Area , 2022 .